Joseph Cummings , Benjamin Hollering , Christopher Manon
{"title":"Invariants for level-1 phylogenetic networks under the Cavendar-Farris-Neyman model","authors":"Joseph Cummings , Benjamin Hollering , Christopher Manon","doi":"10.1016/j.aam.2023.102633","DOIUrl":null,"url":null,"abstract":"<div><p>Phylogenetic networks model evolutionary phenomena that trees fail to capture such as horizontal gene transfer and hybridization. The same Markov models used for sequence evolution on trees can also be extended to networks and similar problems, such as determining if the network parameter is identifiable or finding the invariants of the model, can be studied. This paper focuses on finding the invariants of the Cavendar-Farris-Neyman (CFN) model on level-1 phylogenetic networks by reducing the problem to finding invariants of <em>sunlet networks</em>, which are level-1 networks consisting of a single cycle with leaves at each vertex. We determine all quadratic invariants for sunlet networks, and conjecture these generate the full sunlet ideal.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885823001513","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5
Abstract
Phylogenetic networks model evolutionary phenomena that trees fail to capture such as horizontal gene transfer and hybridization. The same Markov models used for sequence evolution on trees can also be extended to networks and similar problems, such as determining if the network parameter is identifiable or finding the invariants of the model, can be studied. This paper focuses on finding the invariants of the Cavendar-Farris-Neyman (CFN) model on level-1 phylogenetic networks by reducing the problem to finding invariants of sunlet networks, which are level-1 networks consisting of a single cycle with leaves at each vertex. We determine all quadratic invariants for sunlet networks, and conjecture these generate the full sunlet ideal.
期刊介绍:
Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas.
Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.