The Study of Traveling Wave Tube Large Signal Model Based on Machine Learning

Niankang Li, H. Yin, Zhuoyun Li, D. Jia, Zhang Shen, Wenxiang Wang, Yanyu Wei, Lingna Yue, Jin Xu, G. Zhao
{"title":"The Study of Traveling Wave Tube Large Signal Model Based on Machine Learning","authors":"Niankang Li, H. Yin, Zhuoyun Li, D. Jia, Zhang Shen, Wenxiang Wang, Yanyu Wei, Lingna Yue, Jin Xu, G. Zhao","doi":"10.1109/IRMMW-THz50926.2021.9567133","DOIUrl":null,"url":null,"abstract":"Driven by success in areas such as computer vision and natural language processing, attempts have been made in this work to combine deep learning with the large signal of the Traveling Wave Tube (TWT) to assist in predicting the output performance of the tube and advancing the pre-design of TWT. By feeding the trained artificial neural network with several feature parameters, the output power with the tube length can be predicted.","PeriodicalId":6852,"journal":{"name":"2021 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz)","volume":"1 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRMMW-THz50926.2021.9567133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Driven by success in areas such as computer vision and natural language processing, attempts have been made in this work to combine deep learning with the large signal of the Traveling Wave Tube (TWT) to assist in predicting the output performance of the tube and advancing the pre-design of TWT. By feeding the trained artificial neural network with several feature parameters, the output power with the tube length can be predicted.
基于机器学习的行波管大信号模型研究
在计算机视觉和自然语言处理等领域的成功推动下,本研究尝试将深度学习与行波管(TWT)的大信号相结合,以帮助预测行波管的输出性能,并推进行波管的预设计。通过给训练好的人工神经网络输入多个特征参数,可以预测输出功率随管道长度的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信