Recent Progress in Medical Biomaterials

Q4 Biochemistry, Genetics and Molecular Biology
Qiqing Zhang, Y. Zhang, Linzhao Wang, Yongzhen Xing
{"title":"Recent Progress in Medical Biomaterials","authors":"Qiqing Zhang, Y. Zhang, Linzhao Wang, Yongzhen Xing","doi":"10.32604/mcb.2019.07301","DOIUrl":null,"url":null,"abstract":"Guided tissue regeneration (GTR) is a technique that selectively guides cells to attach and proliferate towards an injured site to achieve tissue regeneration through a physical barrier membrane. In this review, we presented a brief overview of the development of GTR technology and GTR materials. Nowadays, new technologies such as electrospinning, nanotechnology, controlled release technique, and 3D printing have been introduced into the study of GTR materials. Resorbable membrane as GTR materials are available as alternatives to conventional non-resorbable membranes. Current GTR materials not only act as a physical barrier membrane but also as a scaffold to play a role in promoting cell proliferation and tissue regeneration. The development trend in GTR materials will be multi-component, functional, and biomimetic composite materials. At the end, we show the research and industrialization of GTR materials in our group.","PeriodicalId":48719,"journal":{"name":"Molecular & Cellular Biomechanics","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Biomechanics","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.32604/mcb.2019.07301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Guided tissue regeneration (GTR) is a technique that selectively guides cells to attach and proliferate towards an injured site to achieve tissue regeneration through a physical barrier membrane. In this review, we presented a brief overview of the development of GTR technology and GTR materials. Nowadays, new technologies such as electrospinning, nanotechnology, controlled release technique, and 3D printing have been introduced into the study of GTR materials. Resorbable membrane as GTR materials are available as alternatives to conventional non-resorbable membranes. Current GTR materials not only act as a physical barrier membrane but also as a scaffold to play a role in promoting cell proliferation and tissue regeneration. The development trend in GTR materials will be multi-component, functional, and biomimetic composite materials. At the end, we show the research and industrialization of GTR materials in our group.
医学生物材料新进展
引导组织再生(Guided tissue regeneration, GTR)是一种通过物理屏障膜,选择性地引导细胞向损伤部位附着和增殖,从而实现组织再生的技术。本文简要介绍了GTR技术和GTR材料的发展概况。目前,静电纺丝、纳米技术、控释技术、3D打印等新技术已被引入到GTR材料的研究中。可吸收膜作为GTR材料是传统不可吸收膜的替代品。目前的GTR材料不仅可以作为物理屏障膜,还可以作为支架,起到促进细胞增殖和组织再生的作用。GTR材料的发展趋势将是多组分、功能化、仿生复合材料。最后介绍了我集团在GTR材料方面的研究和产业化情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular & Cellular Biomechanics
Molecular & Cellular Biomechanics CELL BIOLOGYENGINEERING, BIOMEDICAL&-ENGINEERING, BIOMEDICAL
CiteScore
1.70
自引率
0.00%
发文量
21
期刊介绍: The field of biomechanics concerns with motion, deformation, and forces in biological systems. With the explosive progress in molecular biology, genomic engineering, bioimaging, and nanotechnology, there will be an ever-increasing generation of knowledge and information concerning the mechanobiology of genes, proteins, cells, tissues, and organs. Such information will bring new diagnostic tools, new therapeutic approaches, and new knowledge on ourselves and our interactions with our environment. It becomes apparent that biomechanics focusing on molecules, cells as well as tissues and organs is an important aspect of modern biomedical sciences. The aims of this journal are to facilitate the studies of the mechanics of biomolecules (including proteins, genes, cytoskeletons, etc.), cells (and their interactions with extracellular matrix), tissues and organs, the development of relevant advanced mathematical methods, and the discovery of biological secrets. As science concerns only with relative truth, we seek ideas that are state-of-the-art, which may be controversial, but stimulate and promote new ideas, new techniques, and new applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信