Optimization of Subsurface Smart Irrigation System for Sandy Soils of Arid Climate

IF 0.8 Q3 ENGINEERING, MULTIDISCIPLINARY
Qazi U. Farooq, M. Naqash, A. Ahmed, B. A. Khawaja
{"title":"Optimization of Subsurface Smart Irrigation System for Sandy Soils of Arid Climate","authors":"Qazi U. Farooq, M. Naqash, A. Ahmed, B. A. Khawaja","doi":"10.1155/2021/9012496","DOIUrl":null,"url":null,"abstract":"The Arabian Peninsula is an arid zone with a hot desert climate and severe water scarcity. The low humidity, elevated ambient temperatures, and high evaporation rates in the region deemed conventional surface irrigation unsustainable. The IoT-based subsurface smart irrigation systems can be essentially developed for these regions to avoid surface evaporation losses. In this research, the sandy soil conditions of western Saudi Arabia have been considered in numerical simulations to evaluate the performance of a subsurface smart irrigation system. The influence zone of saturation generated by subsurface diffusers in the target root region has been analysed for two different types of sandy soils. The simulation results generated by the COMSOL Multiphysics program reveal that the subsurface smart irrigation system can be effectively applied to simultaneously manage the target root zone at the ideal saturated conditions and prevent surface evaporation losses.","PeriodicalId":45541,"journal":{"name":"Modelling and Simulation in Engineering","volume":"4 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/9012496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

The Arabian Peninsula is an arid zone with a hot desert climate and severe water scarcity. The low humidity, elevated ambient temperatures, and high evaporation rates in the region deemed conventional surface irrigation unsustainable. The IoT-based subsurface smart irrigation systems can be essentially developed for these regions to avoid surface evaporation losses. In this research, the sandy soil conditions of western Saudi Arabia have been considered in numerical simulations to evaluate the performance of a subsurface smart irrigation system. The influence zone of saturation generated by subsurface diffusers in the target root region has been analysed for two different types of sandy soils. The simulation results generated by the COMSOL Multiphysics program reveal that the subsurface smart irrigation system can be effectively applied to simultaneously manage the target root zone at the ideal saturated conditions and prevent surface evaporation losses.
干旱气候沙质土壤地下智能灌溉系统优化研究
阿拉伯半岛是一个干旱地区,气候炎热,沙漠气候,严重缺水。该地区的低湿度、高环境温度和高蒸发率使得传统的地表灌溉不可持续。基于物联网的地下智能灌溉系统基本上可以为这些地区开发,以避免地表蒸发损失。在本研究中,在数值模拟中考虑了沙特阿拉伯西部的沙质土壤条件,以评估地下智能灌溉系统的性能。针对两种不同类型的沙土,分析了地下扩散器在目标根区产生饱和的影响范围。COMSOL Multiphysics模拟结果表明,地下智能灌溉系统可以有效地在理想饱和条件下同时管理目标根区并防止地表蒸发损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Modelling and Simulation in Engineering
Modelling and Simulation in Engineering ENGINEERING, MULTIDISCIPLINARY-
CiteScore
2.70
自引率
3.10%
发文量
42
审稿时长
18 weeks
期刊介绍: Modelling and Simulation in Engineering aims at providing a forum for the discussion of formalisms, methodologies and simulation tools that are intended to support the new, broader interpretation of Engineering. Competitive pressures of Global Economy have had a profound effect on the manufacturing in Europe, Japan and the USA with much of the production being outsourced. In this context the traditional interpretation of engineering profession linked to the actual manufacturing needs to be broadened to include the integration of outsourced components and the consideration of logistic, economical and human factors in the design of engineering products and services.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信