Correlative imaging to resolve molecular structures in individual cells: Substrate validation study for super-resolution infrared microspectroscopy

IF 4.2 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Agnes Paulus PhD , Sahana Yogarasa BSc , Mustafa Kansiz PhD , Isak Martinsson PhD , Gunnar K. Gouras MD, PhD, Professor , Tomas Deierborg PhD, Professor , Anders Engdahl PhD , Ferenc Borondics PhD , Oxana Klementieva PhD
{"title":"Correlative imaging to resolve molecular structures in individual cells: Substrate validation study for super-resolution infrared microspectroscopy","authors":"Agnes Paulus PhD ,&nbsp;Sahana Yogarasa BSc ,&nbsp;Mustafa Kansiz PhD ,&nbsp;Isak Martinsson PhD ,&nbsp;Gunnar K. Gouras MD, PhD, Professor ,&nbsp;Tomas Deierborg PhD, Professor ,&nbsp;Anders Engdahl PhD ,&nbsp;Ferenc Borondics PhD ,&nbsp;Oxana Klementieva PhD","doi":"10.1016/j.nano.2022.102563","DOIUrl":null,"url":null,"abstract":"<div><p>Light microscopy has been a favorite tool of biological studies for almost a century, recently producing detailed images with exquisite molecular specificity achieving spatial resolution at nanoscale. However, light microscopy is insufficient to provide chemical information as a standalone technique. An increasing amount of evidence demonstrates that optical photothermal infrared microspectroscopy (O-PTIR) is a valuable imaging tool that can extract chemical information to locate molecular structures at submicron resolution. To further investigate the applicability of sub-micron infrared microspectroscopy for biomedical applications, we analyzed the contribution of substrate chemistry to the infrared spectra acquired from individual neurons grown on various imaging substrates. To provide an example of correlative immunofluorescence/O-PTIR imaging, we used immunofluorescence to locate specific organelles for O-PTIR measurement, thus capturing molecular structures at the sub-cellular level directly in cells, which is not possible using traditional infrared microspectroscopy or immunofluorescence microscopy alone.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"43 ","pages":"Article 102563"},"PeriodicalIF":4.2000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1549963422000491/pdfft?md5=499ad7157db3fdf1f38c08c7381b93ee&pid=1-s2.0-S1549963422000491-main.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine : nanotechnology, biology, and medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1549963422000491","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 4

Abstract

Light microscopy has been a favorite tool of biological studies for almost a century, recently producing detailed images with exquisite molecular specificity achieving spatial resolution at nanoscale. However, light microscopy is insufficient to provide chemical information as a standalone technique. An increasing amount of evidence demonstrates that optical photothermal infrared microspectroscopy (O-PTIR) is a valuable imaging tool that can extract chemical information to locate molecular structures at submicron resolution. To further investigate the applicability of sub-micron infrared microspectroscopy for biomedical applications, we analyzed the contribution of substrate chemistry to the infrared spectra acquired from individual neurons grown on various imaging substrates. To provide an example of correlative immunofluorescence/O-PTIR imaging, we used immunofluorescence to locate specific organelles for O-PTIR measurement, thus capturing molecular structures at the sub-cellular level directly in cells, which is not possible using traditional infrared microspectroscopy or immunofluorescence microscopy alone.

Abstract Image

相关成像分析单个细胞分子结构:超分辨率红外微光谱底物验证研究
近一个世纪以来,光学显微镜一直是生物学研究中最受欢迎的工具,最近产生了具有精细分子特异性的详细图像,达到了纳米尺度的空间分辨率。然而,光显微镜作为一种独立的技术不足以提供化学信息。越来越多的证据表明,光学光热红外微光谱(O-PTIR)是一种有价值的成像工具,可以提取化学信息,在亚微米分辨率上定位分子结构。为了进一步研究亚微米红外微光谱在生物医学应用中的适用性,我们分析了基质化学对在不同成像基质上生长的单个神经元获得的红外光谱的贡献。为了提供一个相关的免疫荧光/O-PTIR成像的例子,我们使用免疫荧光定位特定的细胞器进行O-PTIR测量,从而直接在细胞中捕获亚细胞水平的分子结构,这是使用传统的红外显微光谱或免疫荧光显微镜无法实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.10
自引率
0.00%
发文量
133
审稿时长
42 days
期刊介绍: The mission of Nanomedicine: Nanotechnology, Biology, and Medicine (Nanomedicine: NBM) is to promote the emerging interdisciplinary field of nanomedicine. Nanomedicine: NBM is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life and health sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信