Channel length-dependent series resistance?

J. Campbell, K. Cheung, S. Drozdov, R. Southwick, J. Ryan, A. Oates, J. Suehle
{"title":"Channel length-dependent series resistance?","authors":"J. Campbell, K. Cheung, S. Drozdov, R. Southwick, J. Ryan, A. Oates, J. Suehle","doi":"10.1109/SNW.2012.6243299","DOIUrl":null,"url":null,"abstract":"A recently developed series resistance (R<sub>SD</sub>) extraction procedure from a single nanoscale device is shown to be highly robust. Despite these virtues, the technique unexpectedly results in a channel length-dependent R<sub>SD</sub> which is observed across a wide range of channel lengths and across many different technologies (SiO<sub>2</sub>, SiON, and high-k) (see Figs. 1a-f). This observation obviously raises some concerning issues and implications as R<sub>SD</sub> is universally accepted as channel length-independent. However, careful examination of the R<sub>SD</sub> extraction procedure as well as comparison between R<sub>SD</sub>-corrected field effect mobility (u<sub>FE</sub>) and geometric magnetoresistance mobility (u<sub>MR</sub>) suggests that this unexpected observation may be valid.","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":"81 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNW.2012.6243299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A recently developed series resistance (RSD) extraction procedure from a single nanoscale device is shown to be highly robust. Despite these virtues, the technique unexpectedly results in a channel length-dependent RSD which is observed across a wide range of channel lengths and across many different technologies (SiO2, SiON, and high-k) (see Figs. 1a-f). This observation obviously raises some concerning issues and implications as RSD is universally accepted as channel length-independent. However, careful examination of the RSD extraction procedure as well as comparison between RSD-corrected field effect mobility (uFE) and geometric magnetoresistance mobility (uMR) suggests that this unexpected observation may be valid.
通道长度相关的串联电阻?
最近开发的串联电阻(RSD)提取工艺从单个纳米级器件被证明是高度稳健的。尽管有这些优点,但该技术意外地导致了与通道长度相关的RSD,这种RSD在很宽的通道长度范围内和许多不同的技术(SiO2、SiON和high-k)中都可以观察到(见图1a-f)。由于RSD被普遍认为是与信道长度无关的,这一观察结果显然提出了一些有关的问题和含义。然而,仔细检查RSD提取过程以及比较RSD校正的场效应迁移率(uFE)和几何磁阻迁移率(uMR)表明,这种意想不到的观察可能是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信