Innovative thermal energy harvesting for zero power electronics

S. Monfray, O. Puscasu, G. Savelli, U. Soupremanien, E. Ollier, C. Guérin, L. Fréchette, É. Léveillé, G. Mirshekari, C. Maitre, P. Coronel, K. Domanski, P. Grabiec, P. Ancey, D. Guyomar, V. Bottarel, G. Ricotti, F. Boeuf, F. Gaillard, T. Skotnicki
{"title":"Innovative thermal energy harvesting for zero power electronics","authors":"S. Monfray, O. Puscasu, G. Savelli, U. Soupremanien, E. Ollier, C. Guérin, L. Fréchette, É. Léveillé, G. Mirshekari, C. Maitre, P. Coronel, K. Domanski, P. Grabiec, P. Ancey, D. Guyomar, V. Bottarel, G. Ricotti, F. Boeuf, F. Gaillard, T. Skotnicki","doi":"10.1109/SNW.2012.6243313","DOIUrl":null,"url":null,"abstract":"Thermal gradients, commonly present in our environment (fluid lines, warm fronts, electronics) are sources of energy rarely used today. This paper aims to present innovative approaches of thin and/or flexible thermal energy harvesters for smart and autonomous sensor network applications. The harvester system will be based on the collaborative work of interrelated energy nodes/units, which will be either piezo-thermofluidic converters (use of rapid thermal cycles of a working fluid) or piezo-thermomechanic converters (use of the mechanical energy developed by rapid snapping of micro-switches). The two kinds of energy nodes convert a heat flux into storable electrical energy through a piezoelectric transducer. Miniaturization of the energy nodes will lead to increased thermal transfer rates and consequently increased harvested power. To effectively use thermal energy sources in varying environments, the nodes will be adaptive versus different thermal gradients (in a predefined temperature range) and will possibly influence each other. The concept is unique in the sense that it is based on a matrix structure of micro or mini energy nodes which will work together in a collective approach to optimize the harvested energy, and which do not require the use of radiators as classical Seebeck approach, thanks to the controlled thermal resistance. This opens the door to new properties and features of the object, with better performances. It could therefore be declined on flexible substrates, allowing conformability around the sources of potential heat for low power applications.","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":"31 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNW.2012.6243313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

Thermal gradients, commonly present in our environment (fluid lines, warm fronts, electronics) are sources of energy rarely used today. This paper aims to present innovative approaches of thin and/or flexible thermal energy harvesters for smart and autonomous sensor network applications. The harvester system will be based on the collaborative work of interrelated energy nodes/units, which will be either piezo-thermofluidic converters (use of rapid thermal cycles of a working fluid) or piezo-thermomechanic converters (use of the mechanical energy developed by rapid snapping of micro-switches). The two kinds of energy nodes convert a heat flux into storable electrical energy through a piezoelectric transducer. Miniaturization of the energy nodes will lead to increased thermal transfer rates and consequently increased harvested power. To effectively use thermal energy sources in varying environments, the nodes will be adaptive versus different thermal gradients (in a predefined temperature range) and will possibly influence each other. The concept is unique in the sense that it is based on a matrix structure of micro or mini energy nodes which will work together in a collective approach to optimize the harvested energy, and which do not require the use of radiators as classical Seebeck approach, thanks to the controlled thermal resistance. This opens the door to new properties and features of the object, with better performances. It could therefore be declined on flexible substrates, allowing conformability around the sources of potential heat for low power applications.
创新的零功率电子热能收集
热梯度,通常存在于我们的环境中(流体线,暖锋,电子),是今天很少使用的能源来源。本文旨在介绍用于智能和自主传感器网络应用的薄型和/或柔性热能采集器的创新方法。收割机系统将基于相互关联的能量节点/单元的协同工作,这些能量节点/单元将是压电-热流体转换器(利用工作流体的快速热循环)或压电-热机械转换器(利用通过快速敲击微开关产生的机械能)。这两种能量节点通过压电换能器将热流转化为可存储的电能。能量节点的小型化将导致热传递率的增加,从而增加收获的功率。为了在不同的环境中有效地利用热能,节点将对不同的热梯度(在预定义的温度范围内)进行自适应,并可能相互影响。这个概念的独特之处在于,它基于微型或迷你能量节点的矩阵结构,这些节点将以集体的方式协同工作,以优化所收集的能量,并且由于热阻可控,不需要像传统的塞贝克方法那样使用散热器。这为对象的新属性和特征打开了大门,具有更好的性能。因此,它可以在柔性基板上下降,允许低功耗应用的潜在热源周围的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信