Himanshu Jain, B. Palmintier, I. Krad, D. Krishnamurthy
{"title":"Studying the Impact of Distributed Solar PV on Power Systems Using Integrated Transmission and Distribution Models","authors":"Himanshu Jain, B. Palmintier, I. Krad, D. Krishnamurthy","doi":"10.1109/TDC.2018.8440457","DOIUrl":null,"url":null,"abstract":"Rapid growth of distributed energy resources has prompted increasing interest in integrated Transmission (T) and Distribution (D) modeling. This paper presents the results of a distributed generation from solar photovoltaics (DGPV) impact assessment study that was performed using a synthetic T &D model. The primary objective of the study was to present a new approach for DGPV impact assessment, where along with detailed models of transmission and distribution networks, consumer loads were modeled using the physics of end-use equipment, and DGPV was geographically dispersed and connected to the secondary distribution networks. The study highlights (i) how a lack of DGPV forecasting can increase the Area Control Error (ACE) at the transmission level for high penetration levels; and (ii) how capturing transmission voltage changes using integrated T &D can change simulated distribution voltage profiles and voltage regulator operations between integrated T &D and distribution-only simulations.","PeriodicalId":6568,"journal":{"name":"2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)","volume":"14 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TDC.2018.8440457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Rapid growth of distributed energy resources has prompted increasing interest in integrated Transmission (T) and Distribution (D) modeling. This paper presents the results of a distributed generation from solar photovoltaics (DGPV) impact assessment study that was performed using a synthetic T &D model. The primary objective of the study was to present a new approach for DGPV impact assessment, where along with detailed models of transmission and distribution networks, consumer loads were modeled using the physics of end-use equipment, and DGPV was geographically dispersed and connected to the secondary distribution networks. The study highlights (i) how a lack of DGPV forecasting can increase the Area Control Error (ACE) at the transmission level for high penetration levels; and (ii) how capturing transmission voltage changes using integrated T &D can change simulated distribution voltage profiles and voltage regulator operations between integrated T &D and distribution-only simulations.