Obliquely reflected backward stochastic differential equations

IF 1.2 2区 数学 Q2 STATISTICS & PROBABILITY
J. Chassagneux, A. Richou
{"title":"Obliquely reflected backward stochastic differential equations","authors":"J. Chassagneux, A. Richou","doi":"10.1214/20-aihp1061","DOIUrl":null,"url":null,"abstract":"In this paper, we study existence and uniqueness to multidimensional Reflected Backward Stochastic Differential Equations in an open convex domain, allowing for oblique directions of reflection. In a Markovian framework, combining a priori estimates for penalised equations and compactness arguments, we obtain existence results under quite weak assumptions on the driver of the BSDEs and the direction of reflection, which is allowed to depend on both Y and Z. In a non Markovian framework, we obtain existence and uniqueness result for direction of reflection depending on time and Y. We make use in this case of stability estimates that require some smoothness conditions on the domain and the direction of reflection.","PeriodicalId":7902,"journal":{"name":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","volume":"35 1","pages":"2868-2896"},"PeriodicalIF":1.2000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/20-aihp1061","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we study existence and uniqueness to multidimensional Reflected Backward Stochastic Differential Equations in an open convex domain, allowing for oblique directions of reflection. In a Markovian framework, combining a priori estimates for penalised equations and compactness arguments, we obtain existence results under quite weak assumptions on the driver of the BSDEs and the direction of reflection, which is allowed to depend on both Y and Z. In a non Markovian framework, we obtain existence and uniqueness result for direction of reflection depending on time and Y. We make use in this case of stability estimates that require some smoothness conditions on the domain and the direction of reflection.
斜反射后向随机微分方程
本文研究了开放凸域上允许倾斜反射方向的多维反射后向随机微分方程的存在唯一性。在马尔可夫框架中,结合惩罚方程的先验估计和紧性参数,我们在相当弱的假设下得到了关于BSDEs的驱动和反射方向的存在性结果,这是允许依赖于Y和z的。我们得到了反射方向随时间和y的存在唯一性结果。在这种情况下,我们利用了稳定性估计,该稳定性估计需要在域和反射方向上具有一定的光滑性条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
85
审稿时长
6-12 weeks
期刊介绍: The Probability and Statistics section of the Annales de l’Institut Henri Poincaré is an international journal which publishes high quality research papers. The journal deals with all aspects of modern probability theory and mathematical statistics, as well as with their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信