On a family of representations of the Higman–Thompson groups

Pub Date : 2022-07-06 DOI:10.1515/jgth-2021-0190
Andr'e Guimaraes, P. R. Pinto
{"title":"On a family of representations of the Higman–Thompson groups","authors":"Andr'e Guimaraes, P. R. Pinto","doi":"10.1515/jgth-2021-0190","DOIUrl":null,"url":null,"abstract":"Abstract We obtain an uncountable family of inequivalent and irreducible representations of the Higman–Thompson groups F n ⊂ T n ⊂ V n F_{n}\\subset T_{n}\\subset V_{n} . This is accomplished by considering a family of representations of the Higman–Thompson groups V n V_{n} that arise from representations of Cuntz algebras, each one acting on a Hilbert space built upon the orbit of a point x ∈ [ 0 , 1 ) x\\in[0,1) under the dynamical system Φ ⁢ ( x ) = n ⁢ x ( mod 1 ) \\Phi(x)=nx\\pmod{1} . Every such representation is retrieved through the action of V n V_{n} on orb ⁡ ( x ) \\operatorname{orb}(x) , and their restrictions to the subgroups F n F_{n} and T n T_{n} of V n V_{n} are studied using properties of the groups.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2021-0190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract We obtain an uncountable family of inequivalent and irreducible representations of the Higman–Thompson groups F n ⊂ T n ⊂ V n F_{n}\subset T_{n}\subset V_{n} . This is accomplished by considering a family of representations of the Higman–Thompson groups V n V_{n} that arise from representations of Cuntz algebras, each one acting on a Hilbert space built upon the orbit of a point x ∈ [ 0 , 1 ) x\in[0,1) under the dynamical system Φ ⁢ ( x ) = n ⁢ x ( mod 1 ) \Phi(x)=nx\pmod{1} . Every such representation is retrieved through the action of V n V_{n} on orb ⁡ ( x ) \operatorname{orb}(x) , and their restrictions to the subgroups F n F_{n} and T n T_{n} of V n V_{n} are studied using properties of the groups.
分享
查看原文
关于Higman-Thompson群的一族表示
摘要我们得到了Higman-Thompson群F n∧T n∧V n F_{n}\子集T_{n}\子集V_{n}的不可数不等式和不可约表示族。这是通过考虑由Cuntz代数表示产生的Higman-Thompson群V n V_{n}的一系列表示来实现的,每个表示作用于希尔伯特空间,该空间建立在点x∈[0,1)x\in[0,1)的轨道上,在动力系统Φ (x)=n (x) \Phi(x)=nx\pmod{1}下。通过V n V_{n}对orb (x) \算子名{orb}(x)的作用来检索每一个这样的表示,并利用群的性质研究了它们对V n V_{n}的子群F n F_{n}和T n T_{n}的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信