{"title":"On particle Gibbs samplers","authors":"P. Moral, R. Kohn, F. Patras","doi":"10.1214/15-AIHP695","DOIUrl":null,"url":null,"abstract":"Cet article analyse une classe de methodes de Monte Carlo avancees de type particulaire introduites par Andrieu, Doucet, et Holenstein (J. R. Stat. Soc. Ser. B Stat. Methodol. 72 (2010) 1–269). Nous presentons une interpretation naturelle de ces methodes en termes de mesures de Feynman–Kac particulaires non biaisees classiques et d’une nouvelle formule de dualite entre modeles de Feynman–Kac. Ce cadre d’etude apporte un nouvel eclairage sur les fondations et l’analyse mathematique de ces methodes. Une consequence importante est l’equivalence de ces dernieres avec la methode d’echantillonnage de Gibbs d’une distribution de Feynman–Kac multi-corps. Notre etude developpe aussi un nouveau calcul differentiel stochastique fonde sur des techniques geometriques et combinatoires. Ces techniques permettent d’obtenir des developpements non asymptotiques des semigroupes de modeles de Monte Carlo par Chaines de Markov particulaires autour de leur mesure invariante, en fonction de la taille des systemes de particules en interaction auxiliaires. Cette analyse conduit a des estimations quantitatives precises de la convergence a l’equilibre de ces modeles par rapport a l’horizon temporel et la taille des systemes. Nous illustrons ces resultats avec quelques implications directes, notamment l’estimation precise des coefficients de contraction et des exposants de Lyapunov de ces algorithmes de simulation, ainsi que l’estimation fine de l’erreur en norme $\\mathbb{L}_{p}$ entre la loi des etats aleatoires de ces chaines de Markov et leur mesure d’equilibre. Le cadre abstrait de l’article permet d’elaborer et d’etendre de facon naturelle ces methodes a des classes d’algorithmes fondes sur des evolutions d’ilots particulaires (aussi connus sous le nom $\\mathrm{SMC}^{2}$). Nous montrons enfin comment ce cadre general et les resultats de l’article s’appliquent a l’etude de problemes de filtrage non lineaire, l’estimation de parametres fixes dans des modeles de chaines de Markov cachees, et dans des problemes d’integration trajectorielle rencontres en physique quantique et en chimie moleculaire.","PeriodicalId":7902,"journal":{"name":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","volume":"27 1","pages":"1687-1733"},"PeriodicalIF":1.2000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/15-AIHP695","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 9
Abstract
Cet article analyse une classe de methodes de Monte Carlo avancees de type particulaire introduites par Andrieu, Doucet, et Holenstein (J. R. Stat. Soc. Ser. B Stat. Methodol. 72 (2010) 1–269). Nous presentons une interpretation naturelle de ces methodes en termes de mesures de Feynman–Kac particulaires non biaisees classiques et d’une nouvelle formule de dualite entre modeles de Feynman–Kac. Ce cadre d’etude apporte un nouvel eclairage sur les fondations et l’analyse mathematique de ces methodes. Une consequence importante est l’equivalence de ces dernieres avec la methode d’echantillonnage de Gibbs d’une distribution de Feynman–Kac multi-corps. Notre etude developpe aussi un nouveau calcul differentiel stochastique fonde sur des techniques geometriques et combinatoires. Ces techniques permettent d’obtenir des developpements non asymptotiques des semigroupes de modeles de Monte Carlo par Chaines de Markov particulaires autour de leur mesure invariante, en fonction de la taille des systemes de particules en interaction auxiliaires. Cette analyse conduit a des estimations quantitatives precises de la convergence a l’equilibre de ces modeles par rapport a l’horizon temporel et la taille des systemes. Nous illustrons ces resultats avec quelques implications directes, notamment l’estimation precise des coefficients de contraction et des exposants de Lyapunov de ces algorithmes de simulation, ainsi que l’estimation fine de l’erreur en norme $\mathbb{L}_{p}$ entre la loi des etats aleatoires de ces chaines de Markov et leur mesure d’equilibre. Le cadre abstrait de l’article permet d’elaborer et d’etendre de facon naturelle ces methodes a des classes d’algorithmes fondes sur des evolutions d’ilots particulaires (aussi connus sous le nom $\mathrm{SMC}^{2}$). Nous montrons enfin comment ce cadre general et les resultats de l’article s’appliquent a l’etude de problemes de filtrage non lineaire, l’estimation de parametres fixes dans des modeles de chaines de Markov cachees, et dans des problemes d’integration trajectorielle rencontres en physique quantique et en chimie moleculaire.
期刊介绍:
The Probability and Statistics section of the Annales de l’Institut Henri Poincaré is an international journal which publishes high quality research papers. The journal deals with all aspects of modern probability theory and mathematical statistics, as well as with their applications.