A Low Cost sEMG Development Platform for Hand Joint Angle Acquisition

B. P. Beauchamp
{"title":"A Low Cost sEMG Development Platform for Hand Joint Angle Acquisition","authors":"B. P. Beauchamp","doi":"10.1109/IEMCON51383.2020.9284889","DOIUrl":null,"url":null,"abstract":"A consolidation of sEMG to Muscle Force signal processing and Fingertip Workspace Mathematics (FWM) is hypothesized in this literature. Consequently, this hypothesis suggests a projection matrix from muscle force to joint angles of the hand. Using a supervised kinematic algorithm, an sEMG device can learn to describe an individual's fingertip positions in two steps. The first step is inverse kinematics to learn a projection from joint angle to muscle force. The second step is forward kinematics of muscle forces to predict joint angles without direct observation. This literature presents low cost hardware design for acquiring forearm sEMG signals and fingertip joint angles. The consolidation of sEMG to muscle force and kinematic hand modeling bridges the gap between physiologic research and human interfacing technology.","PeriodicalId":6871,"journal":{"name":"2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","volume":"2010 1","pages":"0485-0491"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMCON51383.2020.9284889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A consolidation of sEMG to Muscle Force signal processing and Fingertip Workspace Mathematics (FWM) is hypothesized in this literature. Consequently, this hypothesis suggests a projection matrix from muscle force to joint angles of the hand. Using a supervised kinematic algorithm, an sEMG device can learn to describe an individual's fingertip positions in two steps. The first step is inverse kinematics to learn a projection from joint angle to muscle force. The second step is forward kinematics of muscle forces to predict joint angles without direct observation. This literature presents low cost hardware design for acquiring forearm sEMG signals and fingertip joint angles. The consolidation of sEMG to muscle force and kinematic hand modeling bridges the gap between physiologic research and human interfacing technology.
手关节角度采集的低成本表面肌电信号开发平台
本文献假设表面肌电信号与肌肉力量信号处理和指尖工作空间数学(FWM)的整合。因此,这个假设提出了一个从肌肉力到手关节角度的投影矩阵。使用监督运动算法,表面肌电信号设备可以分两步学习描述个人的指尖位置。第一步是逆运动学,学习从关节角度到肌肉力的投影。第二步是肌肉力量的正运动学,在没有直接观察的情况下预测关节角度。本文介绍了一种用于获取前臂表面肌电信号和指尖关节角度的低成本硬件设计。肌电图对肌肉力量和运动学手部建模的巩固弥补了生理学研究和人机界面技术之间的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信