{"title":"Renewable energy and energy storage to offset diesel generators at expeditionary contingency bases","authors":"Scott M. Katalenich, M. Jacobson","doi":"10.1177/15485129211051377","DOIUrl":null,"url":null,"abstract":"Expeditionary contingency bases (non-permanent, rapidly built, and often remote outposts) for military and non-military applications represent a unique opportunity for renewable energy. Conventional applications rely upon diesel generators to provide electricity. However, the potential exists for renewable energy, improved efficiency, and energy storage to largely offset the diesel consumed by generators. This paper introduces a new methodology for planners to incorporate meteorological data for any location worldwide into a planning tool in order to minimize air pollution and carbon emissions while simultaneously improving the energy security and energy resilience of contingency bases. Benefits of the model apply not just to the military, but also to any organization building an expeditionary base—whether for humanitarian assistance, disaster relief, scientific research, or remote community development. Modeling results demonstrate that contingency bases using energy efficient buildings with batteries, rooftop solar photovoltaics, and vertical axis wind turbines can decrease annual generator diesel consumption by upward of 75% in all major climate zones worldwide, while simultaneously reducing air pollution, carbon emissions, and the risk of combat casualties from resupply missions.","PeriodicalId":44661,"journal":{"name":"Journal of Defense Modeling and Simulation-Applications Methodology Technology-JDMS","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Defense Modeling and Simulation-Applications Methodology Technology-JDMS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/15485129211051377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Expeditionary contingency bases (non-permanent, rapidly built, and often remote outposts) for military and non-military applications represent a unique opportunity for renewable energy. Conventional applications rely upon diesel generators to provide electricity. However, the potential exists for renewable energy, improved efficiency, and energy storage to largely offset the diesel consumed by generators. This paper introduces a new methodology for planners to incorporate meteorological data for any location worldwide into a planning tool in order to minimize air pollution and carbon emissions while simultaneously improving the energy security and energy resilience of contingency bases. Benefits of the model apply not just to the military, but also to any organization building an expeditionary base—whether for humanitarian assistance, disaster relief, scientific research, or remote community development. Modeling results demonstrate that contingency bases using energy efficient buildings with batteries, rooftop solar photovoltaics, and vertical axis wind turbines can decrease annual generator diesel consumption by upward of 75% in all major climate zones worldwide, while simultaneously reducing air pollution, carbon emissions, and the risk of combat casualties from resupply missions.