Structure optimization of woven fabric composites for improvement of mechanical properties using a micromechanics model of woven fabric composites and a genetic algorithm

Gunyong Hwang, Dong Hyun Kim, Myungsoo Kim
{"title":"Structure optimization of woven fabric composites for improvement of mechanical properties using a micromechanics model of woven fabric composites and a genetic algorithm","authors":"Gunyong Hwang, Dong Hyun Kim, Myungsoo Kim","doi":"10.1177/26349833211006114","DOIUrl":null,"url":null,"abstract":"This research aims to optimize the mechanical properties of woven fabric composites, especially the elastic modulus. A micromechanics model of woven fabric composites was used to obtain the mechanical properties of the fiber composite, and a genetic algorithm (GA) was employed for the optimization tool. The structure of the fabric fiber was expressed using the width, thickness, and wave pattern of the fiber strands in the woven fabric composites. In the GA, the chromosome string consisted of the thickness and width of the fill and warp strands, and the objective function was determined to maximize the elastic modulus of the composite. Numerical analysis showed that the longitudinal mechanical properties of the strands contributed significantly to the overall elastic modulus of the composites because the longitudinal property was notably larger than the transverse property. Therefore, to improve the in-plane elastic modulus, the resulting geometry of the composites possessed large volumes of related strands with large cross-sectional areas and small strand waviness. However, the numerical results of the out-of-plane elastic modulus generated large strand waviness, which contributed to the fiber alignment in the out-of-plane direction. The findings of this research are expected to be an excellent resource for the structural design of woven fabric composites.","PeriodicalId":10608,"journal":{"name":"Composites and Advanced Materials","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites and Advanced Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/26349833211006114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This research aims to optimize the mechanical properties of woven fabric composites, especially the elastic modulus. A micromechanics model of woven fabric composites was used to obtain the mechanical properties of the fiber composite, and a genetic algorithm (GA) was employed for the optimization tool. The structure of the fabric fiber was expressed using the width, thickness, and wave pattern of the fiber strands in the woven fabric composites. In the GA, the chromosome string consisted of the thickness and width of the fill and warp strands, and the objective function was determined to maximize the elastic modulus of the composite. Numerical analysis showed that the longitudinal mechanical properties of the strands contributed significantly to the overall elastic modulus of the composites because the longitudinal property was notably larger than the transverse property. Therefore, to improve the in-plane elastic modulus, the resulting geometry of the composites possessed large volumes of related strands with large cross-sectional areas and small strand waviness. However, the numerical results of the out-of-plane elastic modulus generated large strand waviness, which contributed to the fiber alignment in the out-of-plane direction. The findings of this research are expected to be an excellent resource for the structural design of woven fabric composites.
基于机织复合材料微观力学模型和遗传算法的机织复合材料力学性能优化研究
本研究旨在优化机织复合材料的力学性能,特别是弹性模量。采用机织复合材料细观力学模型对其力学性能进行了分析,并采用遗传算法对优化工具进行优化。织物纤维的结构是用织物复合材料中纤维股的宽度、厚度和波形来表示的。在遗传算法中,染色体串由填充线和翘曲线的厚度和宽度组成,确定了使复合材料弹性模量最大化的目标函数。数值分析表明,丝的纵向力学性能对复合材料的整体弹性模量有显著影响,因为纵向力学性能明显大于横向力学性能。因此,为了提高面内弹性模量,所得到的复合材料的几何形状具有大量的相关链、大的横截面积和小的链波纹。然而,面外弹性模量的数值计算结果产生了较大的股线波纹度,导致纤维在面外方向排列。本研究结果有望为机织复合材料的结构设计提供良好的参考资料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信