Exploration of the Catalytic Cycle Dynamics of Vigna Radiata H+-Translocating Pyrophosphatases Through Hydrogen-Deuterium Exchange Mass Spectrometry.

IF 2.3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Journal of Membrane Biology Pub Date : 2023-12-01 Epub Date: 2023-11-13 DOI:10.1007/s00232-023-00295-9
Li-Kun Huang, Yi-Cyuan Huang, Pin-Chuan Chen, Ching-Hung Lee, Shih-Ming Lin, Yuan-Hao Howard Hsu, Rong-Long Pan
{"title":"Exploration of the Catalytic Cycle Dynamics of Vigna Radiata H<sup>+</sup>-Translocating Pyrophosphatases Through Hydrogen-Deuterium Exchange Mass Spectrometry.","authors":"Li-Kun Huang, Yi-Cyuan Huang, Pin-Chuan Chen, Ching-Hung Lee, Shih-Ming Lin, Yuan-Hao Howard Hsu, Rong-Long Pan","doi":"10.1007/s00232-023-00295-9","DOIUrl":null,"url":null,"abstract":"<p><p>Vigna radiata H<sup>+</sup>-translocating pyrophosphatases (VrH<sup>+</sup>-PPases, EC 3.6.1.1) are present in various endomembranes of plants, bacteria, archaea, and certain protozoa. They transport H<sup>+</sup> into the lumen by hydrolyzing pyrophosphate, which is a by-product of many essential anabolic reactions. Although the crystal structure of H<sup>+</sup>-PPases has been elucidated, the H<sup>+</sup> translocation mechanism of H<sup>+</sup>-PPases in the solution state remains unclear. In this study, we used hydrogen-deuterium exchange (HDX) coupled with mass spectrometry (MS) to investigate the dynamics of H<sup>+</sup>-PPases between the previously proposed R state (resting state, Apo form), I state (intermediate state, bound to a substrate analog), and T state (transient state, bound to inorganic phosphate). When hydrogen was replaced by proteins in deuterium oxide solution, the backbone hydrogen atoms, which were exchanged with deuterium, were identified through MS. Accordingly, we used deuterium uptake to examine the structural dynamics and conformational changes of H<sup>+</sup>-PPases in solution. In the highly conserved substrate binding and proton exit regions, HDX-MS revealed the existence of a compact conformation with deuterium exchange when H<sup>+</sup>-PPases were bound with a substrate analog and product. Thus, a novel working model was developed to elucidate the in situ catalytic mechanism of pyrophosphate hydrolysis and proton transport. In this model, a proton is released in the I state, and the TM5 inner wall serves as a proton piston.</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":" ","pages":"443-458"},"PeriodicalIF":2.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00232-023-00295-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Vigna radiata H+-translocating pyrophosphatases (VrH+-PPases, EC 3.6.1.1) are present in various endomembranes of plants, bacteria, archaea, and certain protozoa. They transport H+ into the lumen by hydrolyzing pyrophosphate, which is a by-product of many essential anabolic reactions. Although the crystal structure of H+-PPases has been elucidated, the H+ translocation mechanism of H+-PPases in the solution state remains unclear. In this study, we used hydrogen-deuterium exchange (HDX) coupled with mass spectrometry (MS) to investigate the dynamics of H+-PPases between the previously proposed R state (resting state, Apo form), I state (intermediate state, bound to a substrate analog), and T state (transient state, bound to inorganic phosphate). When hydrogen was replaced by proteins in deuterium oxide solution, the backbone hydrogen atoms, which were exchanged with deuterium, were identified through MS. Accordingly, we used deuterium uptake to examine the structural dynamics and conformational changes of H+-PPases in solution. In the highly conserved substrate binding and proton exit regions, HDX-MS revealed the existence of a compact conformation with deuterium exchange when H+-PPases were bound with a substrate analog and product. Thus, a novel working model was developed to elucidate the in situ catalytic mechanism of pyrophosphate hydrolysis and proton transport. In this model, a proton is released in the I state, and the TM5 inner wall serves as a proton piston.

Abstract Image

氢-氘交换质谱法研究辐射薇纳H+-易位焦磷酸酶的催化循环动力学。
辐射Vigna radiata H+-易位焦磷酸酶(VrH+-PPases, EC 3.6.1.1)存在于植物、细菌、古细菌和某些原生动物的各种膜中。它们通过水解焦磷酸盐将H+输送到管腔中,焦磷酸盐是许多基本合成代谢反应的副产物。虽然已经阐明了H+-PPases的晶体结构,但H+-PPases在溶液状态下的H+易位机制尚不清楚。在这项研究中,我们使用氢-氘交换(HDX)结合质谱(MS)来研究H+-PPases在先前提出的R态(静息态,载脂蛋白形式),I态(中间态,结合底物类似物)和T态(瞬态,结合无机磷酸盐)之间的动力学。在氧化氘溶液中,当氢被蛋白质取代时,通过质谱法确定了与氘交换的主氢原子。因此,我们利用氘摄取来研究溶液中H+-PPases的结构动力学和构象变化。在高度保守的底物结合区和质子出口区,HDX-MS显示,当H+-PPases与底物类似物和产物结合时,存在致密的氘交换构象。因此,建立了一个新的工作模型来阐明焦磷酸盐水解和质子转运的原位催化机理。在这个模型中,一个质子在I状态下被释放,TM5内壁起到质子活塞的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Membrane Biology
Journal of Membrane Biology 生物-生化与分子生物学
CiteScore
4.80
自引率
4.20%
发文量
63
审稿时长
6-12 weeks
期刊介绍: The Journal of Membrane Biology is dedicated to publishing high-quality science related to membrane biology, biochemistry and biophysics. In particular, we welcome work that uses modern experimental or computational methods including but not limited to those with microscopy, diffraction, NMR, computer simulations, or biochemistry aimed at membrane associated or membrane embedded proteins or model membrane systems. These methods might be applied to study topics like membrane protein structure and function, membrane mediated or controlled signaling mechanisms, cell-cell communication via gap junctions, the behavior of proteins and lipids based on monolayer or bilayer systems, or genetic and regulatory mechanisms controlling membrane function. Research articles, short communications and reviews are all welcome. We also encourage authors to consider publishing ''negative'' results where experiments or simulations were well performed, but resulted in unusual or unexpected outcomes without obvious explanations. While we welcome connections to clinical studies, submissions that are primarily clinical in nature or that fail to make connections to the basic science issues of membrane structure, chemistry and function, are not appropriate for the journal. In a similar way, studies that are primarily descriptive and narratives of assays in a clinical or population study are best published in other journals. If you are not certain, it is entirely appropriate to write to us to inquire if your study is a good fit for the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信