Shamprikta Mehreen, Hervé Goëau, Pierre Bonnet, Sophie Chau, Julien Champ, Alexis Joly
{"title":"Estimating Compositions and Nutritional Values of Seed Mixes Based on Vision Transformers.","authors":"Shamprikta Mehreen, Hervé Goëau, Pierre Bonnet, Sophie Chau, Julien Champ, Alexis Joly","doi":"10.34133/plantphenomics.0112","DOIUrl":null,"url":null,"abstract":"<p><p>The cultivation of seed mixtures for local pastures is a traditional mixed cropping technique of cereals and legumes for producing, at a low production cost, a balanced animal feed in energy and protein in livestock systems. By considerably improving the autonomy and safety of agricultural systems, as well as reducing their impact on the environment, it is a type of crop that responds favorably to both the evolution of the European regulations on the use of phytosanitary products and the expectations of consumers who wish to increase their consumption of organic products. However, farmers find it difficult to adopt it because cereals and legumes do not ripen synchronously and the harvested seeds are heterogeneous, making it more difficult to assess their nutritional value. Many efforts therefore remain to be made to acquire and aggregate technical and economical references to evaluate to what extent the cultivation of seed mixtures could positively contribute to securing and reducing the costs of herd feeding. The work presented in this paper proposes new Artificial Intelligence techniques that could be transferred to an online or smartphone application to automatically estimate the nutritional value of harvested seed mixes to help farmers better manage the yield and thus engage them to promote and contribute to a better knowledge of this type of cultivation. For this purpose, an original open image dataset has been built containing 4,749 images of seed mixes, covering 11 seed varieties, with which 2 types of recent deep learning models have been trained. The results highlight the potential of this method and show that the best-performing model is a recent state-of-the-art vision transformer pre-trained with self-supervision (Bidirectional Encoder representation from Image Transformer). It allows an estimation of the nutritional value of seed mixtures with a coefficient of determination <i>R</i><sup>2</sup> score of 0.91, which demonstrates the interest of this type of approach, for its possible use on a large scale.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10637763/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Phenomics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.34133/plantphenomics.0112","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
The cultivation of seed mixtures for local pastures is a traditional mixed cropping technique of cereals and legumes for producing, at a low production cost, a balanced animal feed in energy and protein in livestock systems. By considerably improving the autonomy and safety of agricultural systems, as well as reducing their impact on the environment, it is a type of crop that responds favorably to both the evolution of the European regulations on the use of phytosanitary products and the expectations of consumers who wish to increase their consumption of organic products. However, farmers find it difficult to adopt it because cereals and legumes do not ripen synchronously and the harvested seeds are heterogeneous, making it more difficult to assess their nutritional value. Many efforts therefore remain to be made to acquire and aggregate technical and economical references to evaluate to what extent the cultivation of seed mixtures could positively contribute to securing and reducing the costs of herd feeding. The work presented in this paper proposes new Artificial Intelligence techniques that could be transferred to an online or smartphone application to automatically estimate the nutritional value of harvested seed mixes to help farmers better manage the yield and thus engage them to promote and contribute to a better knowledge of this type of cultivation. For this purpose, an original open image dataset has been built containing 4,749 images of seed mixes, covering 11 seed varieties, with which 2 types of recent deep learning models have been trained. The results highlight the potential of this method and show that the best-performing model is a recent state-of-the-art vision transformer pre-trained with self-supervision (Bidirectional Encoder representation from Image Transformer). It allows an estimation of the nutritional value of seed mixtures with a coefficient of determination R2 score of 0.91, which demonstrates the interest of this type of approach, for its possible use on a large scale.
期刊介绍:
Plant Phenomics is an Open Access journal published in affiliation with the State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University (NAU) and published by the American Association for the Advancement of Science (AAAS). Like all partners participating in the Science Partner Journal program, Plant Phenomics is editorially independent from the Science family of journals.
The mission of Plant Phenomics is to publish novel research that will advance all aspects of plant phenotyping from the cell to the plant population levels using innovative combinations of sensor systems and data analytics. Plant Phenomics aims also to connect phenomics to other science domains, such as genomics, genetics, physiology, molecular biology, bioinformatics, statistics, mathematics, and computer sciences. Plant Phenomics should thus contribute to advance plant sciences and agriculture/forestry/horticulture by addressing key scientific challenges in the area of plant phenomics.
The scope of the journal covers the latest technologies in plant phenotyping for data acquisition, data management, data interpretation, modeling, and their practical applications for crop cultivation, plant breeding, forestry, horticulture, ecology, and other plant-related domains.