Qunshan Ye, Yimin Li, Cheng Wang, Jingming Zheng, Jing Qiao, Jing Yang, Qin-Li Wan
{"title":"Sitagliptin Extends Lifespan of Caenorhabditis elegans by Inhibiting Insulin/Insulin-Like Signaling and Activating Dietary Restriction-Like Signaling Pathways.","authors":"Qunshan Ye, Yimin Li, Cheng Wang, Jingming Zheng, Jing Qiao, Jing Yang, Qin-Li Wan","doi":"10.1159/000534863","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The discovery of longevity molecules that delay aging and prolong lifespan has always been a dream of humanity. Sitagliptin phosphate (SIT), an oral dipeptidyl peptidase-4 (DPP-4) inhibitor, is an oral drug commonly used in the treatment of type 2 diabetes (T2D). In addition to being antidiabetic, previous studies have reported that SIT has shown potential to improve health. However, whether SIT plays a role in the amelioration of aging and the underlying molecular mechanism remain undetermined.</p><p><strong>Methods: </strong>Caenorhabditis elegans (C. elegans) was used as a model of aging. Lifespan assays were performed with adult-stage worms on nematode growth medium plates containing FUdR with or without the specific concentration of SIT. The period of fast body movement, body bending rates, and pharyngeal pumping rates were recorded to assess the healthspan of C. elegans. Gene expression was confirmed by GFP fluorescence signal of transgenic worms and qPCR. In addition, the intracellular reactive oxygen species levels were measured using a free radical sensor H2DCF-DA.</p><p><strong>Results: </strong>We found that SIT significantly extended lifespan and healthspan of C. elegans. Mechanistically, we found that several age-related pathways and genes were involved in SIT-induced lifespan extension. The transcription factors DAF-16/FOXO, SKN-1/NRF2, and HSF-1 played important roles in SIT-induced longevity. Moreover, our findings illustrated that SIT-induced survival benefits by inhibiting the insulin/insulin-like signaling pathway and activating the dietary restriction-related and mitochondrial function-related signaling pathways.</p><p><strong>Conclusion: </strong>Our work may provide a theoretical basis for the development of anti-T2D drugs as antiaging drugs, especially for the treatment of age-related disease in diabetic patients.</p>","PeriodicalId":12662,"journal":{"name":"Gerontology","volume":" ","pages":"90-101"},"PeriodicalIF":3.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gerontology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000534863","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The discovery of longevity molecules that delay aging and prolong lifespan has always been a dream of humanity. Sitagliptin phosphate (SIT), an oral dipeptidyl peptidase-4 (DPP-4) inhibitor, is an oral drug commonly used in the treatment of type 2 diabetes (T2D). In addition to being antidiabetic, previous studies have reported that SIT has shown potential to improve health. However, whether SIT plays a role in the amelioration of aging and the underlying molecular mechanism remain undetermined.
Methods: Caenorhabditis elegans (C. elegans) was used as a model of aging. Lifespan assays were performed with adult-stage worms on nematode growth medium plates containing FUdR with or without the specific concentration of SIT. The period of fast body movement, body bending rates, and pharyngeal pumping rates were recorded to assess the healthspan of C. elegans. Gene expression was confirmed by GFP fluorescence signal of transgenic worms and qPCR. In addition, the intracellular reactive oxygen species levels were measured using a free radical sensor H2DCF-DA.
Results: We found that SIT significantly extended lifespan and healthspan of C. elegans. Mechanistically, we found that several age-related pathways and genes were involved in SIT-induced lifespan extension. The transcription factors DAF-16/FOXO, SKN-1/NRF2, and HSF-1 played important roles in SIT-induced longevity. Moreover, our findings illustrated that SIT-induced survival benefits by inhibiting the insulin/insulin-like signaling pathway and activating the dietary restriction-related and mitochondrial function-related signaling pathways.
Conclusion: Our work may provide a theoretical basis for the development of anti-T2D drugs as antiaging drugs, especially for the treatment of age-related disease in diabetic patients.
期刊介绍:
In view of the ever-increasing fraction of elderly people, understanding the mechanisms of aging and age-related diseases has become a matter of urgent necessity. ''Gerontology'', the oldest journal in the field, responds to this need by drawing topical contributions from multiple disciplines to support the fundamental goals of extending active life and enhancing its quality. The range of papers is classified into four sections. In the Clinical Section, the aetiology, pathogenesis, prevention and treatment of agerelated diseases are discussed from a gerontological rather than a geriatric viewpoint. The Experimental Section contains up-to-date contributions from basic gerontological research. Papers dealing with behavioural development and related topics are placed in the Behavioural Science Section. Basic aspects of regeneration in different experimental biological systems as well as in the context of medical applications are dealt with in a special section that also contains information on technological advances for the elderly. Providing a primary source of high-quality papers covering all aspects of aging in humans and animals, ''Gerontology'' serves as an ideal information tool for all readers interested in the topic of aging from a broad perspective.