Nadezhda A. Karaseva, Ekaterina A. Belyaeva, Valentina V. Levkina, Irina G. Soboleva, Tatyana N. Ermolaeva
{"title":"Development of Piezoelectric Sensors on the Basis of Electrosynthesized Molecularly Imprinted Polymers for β-lactam Antibiotics’ Detection","authors":"Nadezhda A. Karaseva, Ekaterina A. Belyaeva, Valentina V. Levkina, Irina G. Soboleva, Tatyana N. Ermolaeva","doi":"10.1016/j.protcy.2017.04.079","DOIUrl":null,"url":null,"abstract":"<div><p>Piezoelectric sensors with the receptor coating on the basis of molecularly imprinted polymers of cefotaxime and penicillin G obtained by the electropolymerization method directly on the surface of the sensor's electrode have been developed. The obtained calibration curves are linear in the range of concentrations (ng·mL<sup>-1</sup>) 5 – 150 and 10 – 150, the limits of detection are 3.0 and 7.6 (ng·mL<sup>-1</sup>) for penicillin G and cefotaxime respectively. The developed sensors were tested in the analysis of model solutions of antibiotics, samples of meat and milk. The analysed samples did not reveal exceeding antibiotics.</p></div>","PeriodicalId":101042,"journal":{"name":"Procedia Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.protcy.2017.04.079","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212017317300804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Piezoelectric sensors with the receptor coating on the basis of molecularly imprinted polymers of cefotaxime and penicillin G obtained by the electropolymerization method directly on the surface of the sensor's electrode have been developed. The obtained calibration curves are linear in the range of concentrations (ng·mL-1) 5 – 150 and 10 – 150, the limits of detection are 3.0 and 7.6 (ng·mL-1) for penicillin G and cefotaxime respectively. The developed sensors were tested in the analysis of model solutions of antibiotics, samples of meat and milk. The analysed samples did not reveal exceeding antibiotics.