Actions of generalized derivations on prime ideals in $*$-rings with applications

IF 0.7 4区 数学 Q2 MATHEMATICS
A. Abbasi̇, A. Khan, Mohammad Salahuddin Khan
{"title":"Actions of generalized derivations on prime ideals in $*$-rings with applications","authors":"A. Abbasi̇, A. Khan, Mohammad Salahuddin Khan","doi":"10.15672/hujms.1119353","DOIUrl":null,"url":null,"abstract":"In this paper, we make use of generalized derivations to scrutinize the deportment of prime ideal satisfying certain algebraic $*$-identities in rings with involution. In specific cases, the structure of the quotient ring $\\mathscr{R}/\\mathscr{P}$ will be resolved, where $\\mathscr{R}$ is an arbitrary ring and $\\mathscr{P}$ is a prime ideal of $\\mathscr{R}$ and we also find the behaviour of derivations associated with generalized derivations satisfying algebraic $*$-identities involving prime ideals. Finally, we conclude our paper with applications of the previous section's results.","PeriodicalId":55078,"journal":{"name":"Hacettepe Journal of Mathematics and Statistics","volume":"52 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hacettepe Journal of Mathematics and Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15672/hujms.1119353","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we make use of generalized derivations to scrutinize the deportment of prime ideal satisfying certain algebraic $*$-identities in rings with involution. In specific cases, the structure of the quotient ring $\mathscr{R}/\mathscr{P}$ will be resolved, where $\mathscr{R}$ is an arbitrary ring and $\mathscr{P}$ is a prime ideal of $\mathscr{R}$ and we also find the behaviour of derivations associated with generalized derivations satisfying algebraic $*$-identities involving prime ideals. Finally, we conclude our paper with applications of the previous section's results.
$*$-环上素理想上的广义导数作用及其应用
本文利用广义推导研究了对合环上满足某些代数恒等式的素理想的性质。在特定情况下,我们将解析商环$\mathscr{R}/\mathscr{P}$的结构,其中$\mathscr{R}$是一个任意环,$\mathscr{P}$是$\mathscr{R}$的素数理想,并且我们还发现了与满足涉及素数理想的代数$*$恒等式的广义导数相关的衍生行为。最后,我们用前一节结果的应用来总结本文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
100
审稿时长
6-12 weeks
期刊介绍: Hacettepe Journal of Mathematics and Statistics covers all aspects of Mathematics and Statistics. Papers on the interface between Mathematics and Statistics are particularly welcome, including applications to Physics, Actuarial Sciences, Finance and Economics. We strongly encourage submissions for Statistics Section including current and important real world examples across a wide range of disciplines. Papers have innovations of statistical methodology are highly welcome. Purely theoretical papers may be considered only if they include popular real world applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信