A New Approach for Parameter Estimation of Mixed Weibull Distribution: A Case Study in Spindle

Q4 Engineering
Dong-wei, Gu, Zhiqiong, Wang, Guixiang, Shen, Yingzhi, Zhang, Xilu, Zhao
{"title":"A New Approach for Parameter Estimation of Mixed Weibull Distribution: A Case Study in Spindle","authors":"Dong-wei, Gu, Zhiqiong, Wang, Guixiang, Shen, Yingzhi, Zhang, Xilu, Zhao","doi":"10.11916/J.ISSN.1005-9113.2016.03.007","DOIUrl":null,"url":null,"abstract":"In order to improve the accuracy and efficiency of graphical method and maximum likelihood estimation (MLE) in Mixed Weibull distribution parameters estimation, Graphical-GA combines the advantage of graphical method and genetic algorithm (GA) is proposed. Firstly, with the analysis of Weibull probability paper (WPP), mixed Weibull is identified to data fitting. Secondly, the observed value of shape and scale parameters are obtained by graphical method with least square, then optimizing the parameters of mixed Weibull with GA. Thirdly, with the comparative analysis on graphical method, piecewise Weibull and two-Weibull, it shows graphical-GA mixed Weibull is the best. Finally, the spindle MTBF point estimation and interval estimation are got based on mixed Weibull distribution. The results indicate that graphical-GA are improved effectively and the evaluation of spindle can provide the basis for design and reliability growth.","PeriodicalId":39923,"journal":{"name":"Journal of Harbin Institute of Technology (New Series)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Harbin Institute of Technology (New Series)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11916/J.ISSN.1005-9113.2016.03.007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

In order to improve the accuracy and efficiency of graphical method and maximum likelihood estimation (MLE) in Mixed Weibull distribution parameters estimation, Graphical-GA combines the advantage of graphical method and genetic algorithm (GA) is proposed. Firstly, with the analysis of Weibull probability paper (WPP), mixed Weibull is identified to data fitting. Secondly, the observed value of shape and scale parameters are obtained by graphical method with least square, then optimizing the parameters of mixed Weibull with GA. Thirdly, with the comparative analysis on graphical method, piecewise Weibull and two-Weibull, it shows graphical-GA mixed Weibull is the best. Finally, the spindle MTBF point estimation and interval estimation are got based on mixed Weibull distribution. The results indicate that graphical-GA are improved effectively and the evaluation of spindle can provide the basis for design and reliability growth.
混合威布尔分布参数估计的一种新方法——以锭子为例
为了提高混合威布尔分布参数估计中图解法和极大似然估计的精度和效率,结合了图解法和遗传算法的优点,提出了图解-遗传算法。首先,通过对威布尔概率论文(WPP)的分析,对数据拟合进行混合威布尔识别。其次,利用最小二乘法求出形状参数和尺度参数的观测值,并用遗传算法对混合威布尔参数进行优化;第三,通过对图法、分段威布尔法和双威布尔法的比较分析,表明图-遗传算法混合威布尔法是最优的。最后,给出了基于混合威布尔分布的主轴MTBF点估计和区间估计。结果表明,图形遗传算法得到了有效的改进,可为主轴的设计和可靠性提高提供依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
2515
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信