Technical note: colab_zirc_dims: a Google Colab-compatible toolset for automated and semi-automated measurement of mineral grains in laser ablation–inductively coupled plasma–mass spectrometry images using deep learning models

IF 2.7 Q2 GEOCHEMISTRY & GEOPHYSICS
Michael C. Sitar, R. Leary
{"title":"Technical note: colab_zirc_dims: a Google Colab-compatible toolset for automated and semi-automated measurement of mineral grains in laser ablation–inductively coupled plasma–mass spectrometry images using deep learning models","authors":"Michael C. Sitar, R. Leary","doi":"10.5194/gchron-5-109-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Collecting grain measurements for large detrital zircon age datasets is a\ntime-consuming task, but a growing number of studies suggest such data are\nessential to understanding the complex roles of grain size and morphology in\ngrain transport and as indicators for grain provenance. We developed the\ncolab_zirc_dims Python package to automate\ndeep-learning-based segmentation and measurement of mineral grains from\nscaled images captured during laser ablation at facilities that use Chromium\ntargeting software. The colab_zirc_dims\npackage is implemented in a collection of highly interactive Jupyter\nnotebooks that can be run either on a local computer or installation-free\nvia Google Colab. These notebooks also provide additional functionalities\nfor dataset preparation and for semi-automated grain segmentation and\nmeasurement using a simple graphical user interface. Our automated grain\nmeasurement algorithm approaches human measurement accuracy when applied to\na manually measured n=5004 detrital zircon dataset. Errors and\nuncertainty related to variable grain exposure necessitate semi-automated\nmeasurement for production of publication-quality measurements, but we\nestimate that our semi-automated grain segmentation workflow will enable\nusers to collect grain measurement datasets for large (n≥5000)\napplicable image datasets in under a day of work. We hope that the\ncolab_zirc_dims toolset allows more\nresearchers to augment their detrital geochronology datasets with grain\nmeasurements.\n","PeriodicalId":12723,"journal":{"name":"Geochronology","volume":"6 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochronology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/gchron-5-109-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Collecting grain measurements for large detrital zircon age datasets is a time-consuming task, but a growing number of studies suggest such data are essential to understanding the complex roles of grain size and morphology in grain transport and as indicators for grain provenance. We developed the colab_zirc_dims Python package to automate deep-learning-based segmentation and measurement of mineral grains from scaled images captured during laser ablation at facilities that use Chromium targeting software. The colab_zirc_dims package is implemented in a collection of highly interactive Jupyter notebooks that can be run either on a local computer or installation-free via Google Colab. These notebooks also provide additional functionalities for dataset preparation and for semi-automated grain segmentation and measurement using a simple graphical user interface. Our automated grain measurement algorithm approaches human measurement accuracy when applied to a manually measured n=5004 detrital zircon dataset. Errors and uncertainty related to variable grain exposure necessitate semi-automated measurement for production of publication-quality measurements, but we estimate that our semi-automated grain segmentation workflow will enable users to collect grain measurement datasets for large (n≥5000) applicable image datasets in under a day of work. We hope that the colab_zirc_dims toolset allows more researchers to augment their detrital geochronology datasets with grain measurements.
技术说明:colab_zirc_dims:一个与谷歌colab兼容的工具集,用于使用深度学习模型对激光烧蚀-电感耦合等离子体质谱图像中的矿物颗粒进行自动化和半自动测量
摘要收集大型碎屑锆石年龄数据集的颗粒测量数据是一项耗时的任务,但越来越多的研究表明,这些数据对于理解颗粒大小和形态在颗粒运输中的复杂作用以及作为颗粒来源的指标至关重要。我们开发了colab_zirc_dims Python包,以自动进行基于深度学习的分割和测量矿物颗粒,这些图像是在使用chromium瞄准软件的设施中激光烧蚀期间捕获的。colab_zirc_dimpackage是在一个高度交互的jupyternotebook集合中实现的,它既可以在本地计算机上运行,也可以通过Google Colab免费安装。这些笔记本还提供额外的功能,为数据集准备和半自动谷物分割和测量使用一个简单的图形用户界面。当应用于人工测量的n=5004碎屑锆石数据集时,我们的自动粒度测量算法接近人类测量精度。与可变谷物曝光相关的误差和不确定性需要半自动测量来生产出版质量的测量,但我们估计,我们的半自动谷物分割工作流程将使用户能够在一天的工作时间内收集大型(n≥5000)适用图像数据集的谷物测量数据集。我们希望colab_zirc_dims工具集允许更多的研究人员通过颗粒测量来增强他们的碎屑地质年代学数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geochronology
Geochronology Earth and Planetary Sciences-Paleontology
CiteScore
6.60
自引率
0.00%
发文量
35
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信