Bernstein-type characterization of entire functions

O. Dovgoshey, Jürgen Prestin, I. Shevchuk
{"title":"Bernstein-type characterization of entire functions","authors":"O. Dovgoshey, Jürgen Prestin, I. Shevchuk","doi":"10.15407/dopovidi2023.01.010","DOIUrl":null,"url":null,"abstract":"Let ε be the set of all entire functions on the complex plane C. Let us consider the class XE of all complex Banach spaces X such that X ⊇ ε . For (X, ⎥⎥ ⋅ ⎥⎥)∈XE and g ∈X we write En, X (g ) = inf {⎥⎥ g − p⎥⎥: p∈Πn }, where Πn is the set of all polynomials with degree at most n. We describe all X ∈XE for which the relation lim n→∞ (En, X( g ))1/n = 0 holds if and only if g ∈ ε.","PeriodicalId":20898,"journal":{"name":"Reports of the National Academy of Sciences of Ukraine","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports of the National Academy of Sciences of Ukraine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/dopovidi2023.01.010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let ε be the set of all entire functions on the complex plane C. Let us consider the class XE of all complex Banach spaces X such that X ⊇ ε . For (X, ⎥⎥ ⋅ ⎥⎥)∈XE and g ∈X we write En, X (g ) = inf {⎥⎥ g − p⎥⎥: p∈Πn }, where Πn is the set of all polynomials with degree at most n. We describe all X ∈XE for which the relation lim n→∞ (En, X( g ))1/n = 0 holds if and only if g ∈ ε.
整个函数的bernstein型表征
设ε为复平面c上所有完整函数的集合,我们考虑所有复巴拿赫空间X的类XE,使得X。为(X,⎥⎥⋅⎥⎥)∈XE和g∈X我们写En, X (g) = inf{⎥⎥g−p⎥⎥:p∈Πn},其中Πn的所有多项式程度最多n。我们描述所有X∈XE的关系lim n→∞(En, X (g)) 1 / n = 0成立当且仅当g∈ε。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信