Inaam Ashraf, L. Hermes, André Artelt, Barbara Hammer
{"title":"Spatial Graph Convolution Neural Networks for Water Distribution Systems","authors":"Inaam Ashraf, L. Hermes, André Artelt, Barbara Hammer","doi":"10.48550/arXiv.2211.09587","DOIUrl":null,"url":null,"abstract":"We investigate the task of missing value estimation in graphs as given by water distribution systems (WDS) based on sparse signals as a representative machine learning challenge in the domain of critical infrastructure. The underlying graphs have a comparably low node degree and high diameter, while information in the graph is globally relevant, hence graph neural networks face the challenge of long-term dependencies. We propose a specific architecture based on message passing which displays excellent results for a number of benchmark tasks in the WDS domain. Further, we investigate a multi-hop variation, which requires considerably less resources and opens an avenue towards big WDS graphs.","PeriodicalId":91439,"journal":{"name":"Advances in intelligent data analysis. International Symposium on Intelligent Data Analysis","volume":"12 1","pages":"29-41"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in intelligent data analysis. International Symposium on Intelligent Data Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.09587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We investigate the task of missing value estimation in graphs as given by water distribution systems (WDS) based on sparse signals as a representative machine learning challenge in the domain of critical infrastructure. The underlying graphs have a comparably low node degree and high diameter, while information in the graph is globally relevant, hence graph neural networks face the challenge of long-term dependencies. We propose a specific architecture based on message passing which displays excellent results for a number of benchmark tasks in the WDS domain. Further, we investigate a multi-hop variation, which requires considerably less resources and opens an avenue towards big WDS graphs.