Zero-truncated Poisson regression for sparse multiway count data corrupted by false zeros

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Oscar L'opez, Daniel M. Dunlavy, R. Lehoucq
{"title":"Zero-truncated Poisson regression for sparse multiway count data corrupted by false zeros","authors":"Oscar L'opez, Daniel M. Dunlavy, R. Lehoucq","doi":"10.1093/imaiai/iaad016","DOIUrl":null,"url":null,"abstract":"\n We propose a novel statistical inference methodology for multiway count data that is corrupted by false zeros that are indistinguishable from true zero counts. Our approach consists of zero-truncating the Poisson distribution to neglect all zero values. This simple truncated approach dispenses with the need to distinguish between true and false zero counts and reduces the amount of data to be processed. Inference is accomplished via tensor completion that imposes low-rank tensor structure on the Poisson parameter space. Our main result shows that an $N$-way rank-$R$ parametric tensor $\\boldsymbol{\\mathscr{M}}\\in (0,\\infty )^{I\\times \\cdots \\times I}$ generating Poisson observations can be accurately estimated by zero-truncated Poisson regression from approximately $IR^2\\log _2^2(I)$ non-zero counts under the nonnegative canonical polyadic decomposition. Our result also quantifies the error made by zero-truncating the Poisson distribution when the parameter is uniformly bounded from below. Therefore, under a low-rank multiparameter model, we propose an implementable approach guaranteed to achieve accurate regression in under-determined scenarios with substantial corruption by false zeros. Several numerical experiments are presented to explore the theoretical results.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imaiai/iaad016","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

We propose a novel statistical inference methodology for multiway count data that is corrupted by false zeros that are indistinguishable from true zero counts. Our approach consists of zero-truncating the Poisson distribution to neglect all zero values. This simple truncated approach dispenses with the need to distinguish between true and false zero counts and reduces the amount of data to be processed. Inference is accomplished via tensor completion that imposes low-rank tensor structure on the Poisson parameter space. Our main result shows that an $N$-way rank-$R$ parametric tensor $\boldsymbol{\mathscr{M}}\in (0,\infty )^{I\times \cdots \times I}$ generating Poisson observations can be accurately estimated by zero-truncated Poisson regression from approximately $IR^2\log _2^2(I)$ non-zero counts under the nonnegative canonical polyadic decomposition. Our result also quantifies the error made by zero-truncating the Poisson distribution when the parameter is uniformly bounded from below. Therefore, under a low-rank multiparameter model, we propose an implementable approach guaranteed to achieve accurate regression in under-determined scenarios with substantial corruption by false zeros. Several numerical experiments are presented to explore the theoretical results.
被假零损坏的稀疏多路计数数据的零截断泊松回归
我们提出了一种新的统计推断方法,用于多路计数数据,这些数据被假零损坏,与真零计数无法区分。我们的方法包括对泊松分布进行零截断以忽略所有零值。这种简单的截断方法不需要区分真零计数和假零计数,并减少了要处理的数据量。推理是通过张量补全来完成的,它在泊松参数空间上施加了低秩张量结构。我们的主要结果表明 $N$-路阶-$R$ 参数张量 $\boldsymbol{\mathscr{M}}\in (0,\infty )^{I\times \cdots \times I}$ 通过零截断泊松回归可以精确地估计泊松观测值的产生 $IR^2\log _2^2(I)$ 非负正则多进分解下的非零计数。我们的结果还量化了当参数从下面均匀有界时,对泊松分布进行零截断所产生的误差。因此,在低秩多参数模型下,我们提出了一种可实现的方法,保证在假零严重破坏的欠确定场景下实现准确的回归。通过几个数值实验来验证理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信