Physics-based modeling and predictive simulation of powder bed fusion additive manufacturing across length scales

Q1 Mathematics
Christoph Meier, Sebastian L. Fuchs, Nils Much, Jonas Nitzler, Ryan W. Penny, Patrick M. Praegla, Sebastian D. Proell, Yushen Sun, Reimar Weissbach, Magdalena Schreter, Neil E. Hodge, A. John Hart, Wolfgang A. Wall
{"title":"Physics-based modeling and predictive simulation of powder bed fusion additive manufacturing across length scales","authors":"Christoph Meier,&nbsp;Sebastian L. Fuchs,&nbsp;Nils Much,&nbsp;Jonas Nitzler,&nbsp;Ryan W. Penny,&nbsp;Patrick M. Praegla,&nbsp;Sebastian D. Proell,&nbsp;Yushen Sun,&nbsp;Reimar Weissbach,&nbsp;Magdalena Schreter,&nbsp;Neil E. Hodge,&nbsp;A. John Hart,&nbsp;Wolfgang A. Wall","doi":"10.1002/gamm.202100014","DOIUrl":null,"url":null,"abstract":"<p>Powder bed fusion additive manufacturing (PBFAM) of metals has the potential to enable new paradigms of product design, manufacturing and supply chains while accelerating the realization of new technologies in the medical, aerospace, and other industries. Currently, wider adoption of PBFAM is held back by difficulty in part qualification, high production costs and low production rates, as extensive process tuning, post-processing, and inspection are required before a final part can be produced and deployed. Physics-based modeling and predictive simulation of PBFAM offers the potential to advance fundamental understanding of physical mechanisms that initiate process instabilities and cause defects. In turn, these insights can help link process and feedstock parameters with resulting part and material properties, thereby predicting optimal processing conditions and inspiring the development of improved processing hardware, strategies and materials. This work presents recent developments of our research team in the modeling of metal PBFAM processes spanning length scales, namely mesoscale powder modeling, mesoscale melt pool modeling, macroscale thermo-solid-mechanical modeling and microstructure modeling. Ongoing work in experimental validation of these models is also summarized. In conclusion, we discuss the interplay of these individual submodels within an integrated overall modeling approach, along with future research directions.</p>","PeriodicalId":53634,"journal":{"name":"GAMM Mitteilungen","volume":"44 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/gamm.202100014","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GAMM Mitteilungen","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gamm.202100014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 19

Abstract

Powder bed fusion additive manufacturing (PBFAM) of metals has the potential to enable new paradigms of product design, manufacturing and supply chains while accelerating the realization of new technologies in the medical, aerospace, and other industries. Currently, wider adoption of PBFAM is held back by difficulty in part qualification, high production costs and low production rates, as extensive process tuning, post-processing, and inspection are required before a final part can be produced and deployed. Physics-based modeling and predictive simulation of PBFAM offers the potential to advance fundamental understanding of physical mechanisms that initiate process instabilities and cause defects. In turn, these insights can help link process and feedstock parameters with resulting part and material properties, thereby predicting optimal processing conditions and inspiring the development of improved processing hardware, strategies and materials. This work presents recent developments of our research team in the modeling of metal PBFAM processes spanning length scales, namely mesoscale powder modeling, mesoscale melt pool modeling, macroscale thermo-solid-mechanical modeling and microstructure modeling. Ongoing work in experimental validation of these models is also summarized. In conclusion, we discuss the interplay of these individual submodels within an integrated overall modeling approach, along with future research directions.

Abstract Image

基于物理的粉末床熔融增材制造跨长度尺度建模和预测仿真
金属粉末床熔融增材制造(pbam)有可能实现产品设计、制造和供应链的新范式,同时加速医疗、航空航天和其他行业新技术的实现。目前,由于在最终零件生产和部署之前需要进行大量的工艺调整、后处理和检查,零件鉴定困难、生产成本高和生产率低阻碍了pfam的广泛采用。基于物理的pbam建模和预测模拟提供了对引发工艺不稳定和导致缺陷的物理机制的基本理解的潜力。反过来,这些见解可以帮助将工艺和原料参数与产生的零件和材料特性联系起来,从而预测最佳加工条件,并激发改进加工硬件、策略和材料的发展。这项工作介绍了我们的研究团队在金属pfam过程跨长度尺度建模方面的最新进展,即中尺度粉末建模、中尺度熔池建模、宏观热固力学建模和微观结构建模。还总结了这些模型在实验验证方面正在进行的工作。最后,我们讨论了这些单独的子模型在集成的整体建模方法中的相互作用,以及未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
GAMM Mitteilungen
GAMM Mitteilungen Mathematics-Applied Mathematics
CiteScore
8.80
自引率
0.00%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信