Probit Models for Grouped-data Migration Flows: A Theoretical Note

C. Chasco, P. Aroca, L. Anselin
{"title":"Probit Models for Grouped-data Migration Flows: A Theoretical Note","authors":"C. Chasco, P. Aroca, L. Anselin","doi":"10.18800/economia.201902.001","DOIUrl":null,"url":null,"abstract":"In this theoretical note, we propose the GProbit model as an alternative to gravity models to esti-mate grouped-data flows. This is a model based on the random utility theory, which is consistentwith the principle of population behavior. Instead of migrant counts, the dependent variable ofthe GProbit model of flows consists of a number of observed proportions. It allows explaining thepropensity to migrate from any origin to a destination, which is an interesting relative conceptnot affected by the size effect. For this reason, it is expected to have better fit and less problemsof non-normality, as illustrated by an application for the internal migration flows of the Spanishregions.","PeriodicalId":100390,"journal":{"name":"Economía Informa","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Economía Informa","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18800/economia.201902.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this theoretical note, we propose the GProbit model as an alternative to gravity models to esti-mate grouped-data flows. This is a model based on the random utility theory, which is consistentwith the principle of population behavior. Instead of migrant counts, the dependent variable ofthe GProbit model of flows consists of a number of observed proportions. It allows explaining thepropensity to migrate from any origin to a destination, which is an interesting relative conceptnot affected by the size effect. For this reason, it is expected to have better fit and less problemsof non-normality, as illustrated by an application for the internal migration flows of the Spanishregions.
分组数据迁移流的概率模型:一个理论注释
在这篇理论笔记中,我们提出GProbit模型作为重力模型的替代方案来估计分组数据流。这是一个基于随机效用理论的模型,符合人口行为原理。流动的GProbit模型的因变量由许多观察到的比例组成,而不是移民数量。它可以解释从任何起点迁移到目的地的倾向,这是一个有趣的相对概念,不受规模效应的影响。由于这个原因,预计它将有更好的适合性和更少的非正常问题,如西班牙地区内部移民流动的应用程序所示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信