Quantum dynamics under continuous projective measurements: Non-Hermitian description and the continuum-space limit

V. Dubey, C. Bernardin, A. Dhar
{"title":"Quantum dynamics under continuous projective measurements: Non-Hermitian description and the continuum-space limit","authors":"V. Dubey, C. Bernardin, A. Dhar","doi":"10.1103/PHYSREVA.103.032221","DOIUrl":null,"url":null,"abstract":"The problem of the time of arrival of a quantum system in a specified state is considered in the framework of the repeated measurement protocol and in particular the limit of continuous measurements is discussed. It is shown that for a particular choice of system-detector coupling, the Zeno effect is avoided and the system can be described effectively by a non-Hermitian effective Hamiltonian. As a specific example we consider the evolution of a quantum particle on a one-dimensional lattice that is subjected to position measurements at a specific site. By solving the corresponding non-Hermitian wave function evolution equation, we present analytic closed-form results on the survival probability and the first arrival time distribution. Finally we discuss the limit of vanishing lattice spacing and show that this leads to a continuum description where the particle evolves via the free Schrodinger equation with complex Robin boundary conditions at the detector site. Several interesting physical results for this dynamics are presented.","PeriodicalId":8484,"journal":{"name":"arXiv: Quantum Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVA.103.032221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

The problem of the time of arrival of a quantum system in a specified state is considered in the framework of the repeated measurement protocol and in particular the limit of continuous measurements is discussed. It is shown that for a particular choice of system-detector coupling, the Zeno effect is avoided and the system can be described effectively by a non-Hermitian effective Hamiltonian. As a specific example we consider the evolution of a quantum particle on a one-dimensional lattice that is subjected to position measurements at a specific site. By solving the corresponding non-Hermitian wave function evolution equation, we present analytic closed-form results on the survival probability and the first arrival time distribution. Finally we discuss the limit of vanishing lattice spacing and show that this leads to a continuum description where the particle evolves via the free Schrodinger equation with complex Robin boundary conditions at the detector site. Several interesting physical results for this dynamics are presented.
连续射影测量下的量子动力学:非厄米描述和连续空间极限
在重复测量协议的框架下,考虑了量子系统在特定状态下的到达时间问题,特别讨论了连续测量的极限。结果表明,对于系统-探测器耦合的特定选择,可以避免芝诺效应,并且可以用非厄米有效哈密顿量有效地描述系统。作为一个具体的例子,我们考虑一个量子粒子在一维晶格上的演化,该晶格受到特定位置测量的影响。通过求解相应的非厄米波函数演化方程,给出了生存概率和首次到达时间分布的解析闭式结果。最后,我们讨论了消失晶格间距的极限,并表明这导致了一个连续体描述,其中粒子在探测器位置通过具有复Robin边界条件的自由薛定谔方程演化。给出了这种动力学的几个有趣的物理结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信