Metal-organic framework-tailored perovskite solar cells

IF 3.3 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
Peng Chen, Jingwei Hou, Lianzhou Wang
{"title":"Metal-organic framework-tailored perovskite solar cells","authors":"Peng Chen, Jingwei Hou, Lianzhou Wang","doi":"10.20517/microstructures.2022.05","DOIUrl":null,"url":null,"abstract":"Metal-organic frameworks (MOFs) with tailorable structures and building blocks have demonstrated their advantages in improving the long-term stability of perovskite solar cells (PSCs). However, the inferior conductivity of MOFs and their lack of strong chemical interaction with perovskites cause undesirable interfacial charge carrier recombination and then deteriorate the photovoltaic (PV) performance of PSCs. This perspective offers an insightful overview of the versatile functionalities and key merits of MOFs for stabilizing PSCs under various external stimuli in terms of MOF interlayers and MOF-perovskite heterostructures. To tackle the charge transport problem of MOFs, promising strategies are outlined to improve the intrinsic conductivity and chemical coordination of MOFs, with the aim of achieving long-term stable PSCs without compromising their PV performance. The current challenging issues and potential solutions are also discussed to provide a roadmap for MOF-tailored PSCs towards practical applications.","PeriodicalId":22044,"journal":{"name":"Superlattices and Microstructures","volume":"1 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superlattices and Microstructures","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.20517/microstructures.2022.05","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 4

Abstract

Metal-organic frameworks (MOFs) with tailorable structures and building blocks have demonstrated their advantages in improving the long-term stability of perovskite solar cells (PSCs). However, the inferior conductivity of MOFs and their lack of strong chemical interaction with perovskites cause undesirable interfacial charge carrier recombination and then deteriorate the photovoltaic (PV) performance of PSCs. This perspective offers an insightful overview of the versatile functionalities and key merits of MOFs for stabilizing PSCs under various external stimuli in terms of MOF interlayers and MOF-perovskite heterostructures. To tackle the charge transport problem of MOFs, promising strategies are outlined to improve the intrinsic conductivity and chemical coordination of MOFs, with the aim of achieving long-term stable PSCs without compromising their PV performance. The current challenging issues and potential solutions are also discussed to provide a roadmap for MOF-tailored PSCs towards practical applications.
金属有机框架定制钙钛矿太阳能电池
具有可定制结构和构建块的金属有机框架(MOFs)在提高钙钛矿太阳能电池(PSCs)的长期稳定性方面具有优势。然而,由于mof的电导率较差,且与钙钛矿缺乏强的化学相互作用,导致PSCs的界面载流子重组,从而降低了其光伏(PV)性能。从MOF中间层和MOF-钙钛矿异质结构的角度,对MOF在各种外部刺激下稳定psc的多功能和关键优点进行了深刻的概述。为了解决mof的电荷输运问题,概述了改善mof的内在电导率和化学配位的有希望的策略,目的是在不影响其PV性能的情况下实现长期稳定的PSCs。本文还讨论了当前具有挑战性的问题和潜在的解决方案,为mof定制PSCs走向实际应用提供了路线图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Superlattices and Microstructures
Superlattices and Microstructures 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.20%
发文量
35
审稿时长
2.8 months
期刊介绍: Micro and Nanostructures is a journal disseminating the science and technology of micro-structures and nano-structures in materials and their devices, including individual and collective use of semiconductors, metals and insulators for the exploitation of their unique properties. The journal hosts papers dealing with fundamental and applied experimental research as well as theoretical studies. Fields of interest, including emerging ones, cover: • Novel micro and nanostructures • Nanomaterials (nanowires, nanodots, 2D materials ) and devices • Synthetic heterostructures • Plasmonics • Micro and nano-defects in materials (semiconductor, metal and insulators) • Surfaces and interfaces of thin films In addition to Research Papers, the journal aims at publishing Topical Reviews providing insights into rapidly evolving or more mature fields. Written by leading researchers in their respective fields, those articles are commissioned by the Editorial Board. Formerly known as Superlattices and Microstructures, with a 2021 IF of 3.22 and 2021 CiteScore of 5.4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信