Effect of oxygen vacancy gradient on ion-irradiated Ca-doped YMnO3 thin films

K. N. Rathod, Keval Gadani, Davit Dhruv, V. G. Shrimali, S. Solanki, A. D. Joshi, J. Singh, K. Chae, K. Asokan, P. Solanki, N. Shah
{"title":"Effect of oxygen vacancy gradient on ion-irradiated Ca-doped YMnO3 thin films","authors":"K. N. Rathod, Keval Gadani, Davit Dhruv, V. G. Shrimali, S. Solanki, A. D. Joshi, J. Singh, K. Chae, K. Asokan, P. Solanki, N. Shah","doi":"10.1116/6.0000507","DOIUrl":null,"url":null,"abstract":"In this study, we investigate the effect of ion irradiation on Y0.95Ca0.05MnO3 (YCMO) thin films. X-ray diffraction and Raman spectroscopy measurements show single-phase and strain/stress modifications with ion irradiation. Rutherford backscattering spectrometry confirms the variation in oxygen vacancies. The near-edge x-ray absorption fine structure shows valence state reduction of Mn ions, which is attributed to oxygen vacancies. The optimal resistive switching ratio is observed at the lowest fluence (1 × 1011 ions/cm2) of ion irradiation. At higher fluences (1 × 1012 and 1 × 1013 ions/cm2), the strain relaxation and oxygen vacancy annihilation are ascribed to the local annealing effect. The double logarithmic curve and modified Langmuir–Child's law satisfy the space charge limited conduction mechanism in all thin films. These results suggest the crucial role of irradiation-induced oxygen vacancies in modifying the electronic structure and electrical properties of YCMO thin films.","PeriodicalId":17652,"journal":{"name":"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0000507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this study, we investigate the effect of ion irradiation on Y0.95Ca0.05MnO3 (YCMO) thin films. X-ray diffraction and Raman spectroscopy measurements show single-phase and strain/stress modifications with ion irradiation. Rutherford backscattering spectrometry confirms the variation in oxygen vacancies. The near-edge x-ray absorption fine structure shows valence state reduction of Mn ions, which is attributed to oxygen vacancies. The optimal resistive switching ratio is observed at the lowest fluence (1 × 1011 ions/cm2) of ion irradiation. At higher fluences (1 × 1012 and 1 × 1013 ions/cm2), the strain relaxation and oxygen vacancy annihilation are ascribed to the local annealing effect. The double logarithmic curve and modified Langmuir–Child's law satisfy the space charge limited conduction mechanism in all thin films. These results suggest the crucial role of irradiation-induced oxygen vacancies in modifying the electronic structure and electrical properties of YCMO thin films.
氧空位梯度对离子辐照掺钙YMnO3薄膜的影响
在本研究中,我们研究了离子辐照对Y0.95Ca0.05MnO3 (YCMO)薄膜的影响。x射线衍射和拉曼光谱测量显示离子辐照下的单相和应变/应力变化。卢瑟福后向散射光谱法证实了氧空位的变化。近边x射线吸收精细结构显示Mn离子的价态还原,这是由氧空位引起的。在离子辐照的最低通量(1 × 1011个离子/cm2)下观察到最佳的电阻开关比。在较高的影响下(1 × 1012和1 × 1013离子/cm2),应变弛豫和氧空位湮灭归因于局部退火效应。双对数曲线和修正的Langmuir-Child定律满足所有薄膜的空间电荷限制传导机制。这些结果表明辐照诱导的氧空位在改变YCMO薄膜的电子结构和电学性能方面起着至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信