Predictive analysis of real‐time strategy games: A graph mining approach

IF 6.4 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Isam A. Alobaidi, J. Leopold, Ali Allami, Nathan Eloe, Dustin Tanksley
{"title":"Predictive analysis of real‐time strategy games: A graph mining approach","authors":"Isam A. Alobaidi, J. Leopold, Ali Allami, Nathan Eloe, Dustin Tanksley","doi":"10.1002/widm.1398","DOIUrl":null,"url":null,"abstract":"Machine learning and computational intelligence have facilitated the development of recommendation systems for a broad range of domains. Such recommendations are based on contextual information that is explicitly provided or pervasively collected. Recommendation systems often improve decision‐making or increase the efficacy of a task. Real‐time strategy (RTS) video games are not only a popular entertainment medium, they also are an abstraction of many real‐world applications where the aim is to increase your resources and decrease those of your opponent. Using predictive analytics, which examines past examples of success and failure, we can learn how to predict positive outcomes for such scenarios. The goal of our research is to develop an accurate predictive recommendation system for multiplayer strategic games to determine recommendations for moves that a player should, and should not, make and thereby provide a competitive advantage. Herein we compare two techniques, frequent and discriminative subgraph mining, in terms of the error rates associated with their predictions in this context. As proof of concept, we present the results of an experiment that utilizes our strategies for two particular RTS games.","PeriodicalId":48970,"journal":{"name":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","volume":"24 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2020-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/widm.1398","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

Abstract

Machine learning and computational intelligence have facilitated the development of recommendation systems for a broad range of domains. Such recommendations are based on contextual information that is explicitly provided or pervasively collected. Recommendation systems often improve decision‐making or increase the efficacy of a task. Real‐time strategy (RTS) video games are not only a popular entertainment medium, they also are an abstraction of many real‐world applications where the aim is to increase your resources and decrease those of your opponent. Using predictive analytics, which examines past examples of success and failure, we can learn how to predict positive outcomes for such scenarios. The goal of our research is to develop an accurate predictive recommendation system for multiplayer strategic games to determine recommendations for moves that a player should, and should not, make and thereby provide a competitive advantage. Herein we compare two techniques, frequent and discriminative subgraph mining, in terms of the error rates associated with their predictions in this context. As proof of concept, we present the results of an experiment that utilizes our strategies for two particular RTS games.
实时策略游戏的预测分析:一种图挖掘方法
机器学习和计算智能促进了广泛领域推荐系统的发展。这些建议是基于明确提供或广泛收集的上下文信息。推荐系统通常可以改善决策或提高任务的效率。即时战略(RTS)电子游戏不仅是一种流行的娱乐媒介,也是许多现实世界应用的抽象,其目标是增加你的资源并减少对手的资源。使用预测分析,它检查过去的成功和失败的例子,我们可以学习如何预测这种情况下的积极结果。我们的研究目标是为多人策略游戏开发一个准确的预测推荐系统,以确定玩家应该或不应该采取的行动建议,从而提供竞争优势。在这里,我们比较了两种技术,频繁和判别子图挖掘,在这种情况下,与他们的预测相关的错误率。作为概念的证明,我们在两个特定的RTS游戏中使用了我们的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery
Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
22.70
自引率
2.60%
发文量
39
审稿时长
>12 weeks
期刊介绍: The goals of Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery (WIREs DMKD) are multifaceted. Firstly, the journal aims to provide a comprehensive overview of the current state of data mining and knowledge discovery by featuring ongoing reviews authored by leading researchers. Secondly, it seeks to highlight the interdisciplinary nature of the field by presenting articles from diverse perspectives, covering various application areas such as technology, business, healthcare, education, government, society, and culture. Thirdly, WIREs DMKD endeavors to keep pace with the rapid advancements in data mining and knowledge discovery through regular content updates. Lastly, the journal strives to promote active engagement in the field by presenting its accomplishments and challenges in an accessible manner to a broad audience. The content of WIREs DMKD is intended to benefit upper-level undergraduate and postgraduate students, teaching and research professors in academic programs, as well as scientists and research managers in industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信