Wettability Properties of Biochar Added Wood/Polypropylene Composites

Oisik Das
{"title":"Wettability Properties of Biochar Added Wood/Polypropylene Composites","authors":"Oisik Das","doi":"10.19080/AJOP.2018.01.555570","DOIUrl":null,"url":null,"abstract":"In an attempt to comprehend the outdoor application potential of biochar reinforced wood and polypropylene composites, their wettability properties were investigated. The localised water affinity was measured through drop shape analysis in a Goniometer whereas the comprehensive susceptibility towards water was done through a thickness swell test. The results indicate that the addition of 12wt% of wood waste ( Pinus radiata ) biochar to a wood and polypropylene composite had the highest resistance towards water among the three component composites. In general, the predilection towards water increased with an increase in the amount of biochar in the composites. It is recommended to produce the biochar with low pyrolysis temperature (yielding a more hydrophobic biochar) to develop composites with acceptable water opposing properties.","PeriodicalId":6991,"journal":{"name":"Academic Journal of Polymer Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Journal of Polymer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19080/AJOP.2018.01.555570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In an attempt to comprehend the outdoor application potential of biochar reinforced wood and polypropylene composites, their wettability properties were investigated. The localised water affinity was measured through drop shape analysis in a Goniometer whereas the comprehensive susceptibility towards water was done through a thickness swell test. The results indicate that the addition of 12wt% of wood waste ( Pinus radiata ) biochar to a wood and polypropylene composite had the highest resistance towards water among the three component composites. In general, the predilection towards water increased with an increase in the amount of biochar in the composites. It is recommended to produce the biochar with low pyrolysis temperature (yielding a more hydrophobic biochar) to develop composites with acceptable water opposing properties.
生物炭添加木材/聚丙烯复合材料的润湿性研究
为了了解生物炭增强木材和聚丙烯复合材料的户外应用潜力,研究了它们的润湿性。局部的水亲和性是通过液滴形状分析测量的,而对水的综合敏感性是通过厚度膨胀试验进行的。结果表明,在木材和聚丙烯复合材料中添加12wt%的废松木(辐射松)生物炭具有最高的耐水性。总的来说,对水的偏好随着复合材料中生物炭含量的增加而增加。建议采用低热解温度的生物炭(产生更疏水的生物炭)来开发具有可接受的抗水性能的复合材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信