The Kontsevich integral for bottom tangles in handlebodies

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
K. Habiro, G. Massuyeau
{"title":"The Kontsevich integral for bottom tangles in handlebodies","authors":"K. Habiro, G. Massuyeau","doi":"10.4171/qt/155","DOIUrl":null,"url":null,"abstract":"Using an extension of the Kontsevich integral to tangles in handlebodies \nsimilar to a construction given by Andersen, Mattes and Reshetikhin, we \nconstruct a functor $Z:\\mathcal{B}\\to \\widehat{\\mathbb{A}}$, where \n$\\mathcal{B}$ is the category of bottom tangles in handlebodies and \n$\\widehat{\\mathbb{A}}$ is the degree-completion of the category $\\mathbb{A}$ of \nJacobi diagrams in handlebodies. As a symmetric monoidal linear category, \n$\\mathbb{A}$ is the linear PROP governing \"Casimir Hopf algebras\", which are \ncocommutative Hopf algebras equipped with a primitive invariant symmetric \n2-tensor. The functor $Z$ induces a canonical isomorphism $\\hbox{gr}\\mathcal{B} \n\\cong \\mathbb{A}$, where $\\hbox{gr}\\mathcal{B}$ is the associated graded of the \nVassiliev-Goussarov filtration on $\\mathcal{B}$. To each Drinfeld associator \n$\\varphi$ we associate a ribbon quasi-Hopf algebra $H_\\varphi$ in \n$\\hbox{gr}\\mathcal{B}$, and we prove that the braided Hopf algebra resulting \nfrom $H_\\varphi$ by \"transmutation\" is precisely the image by $Z$ of a \ncanonical Hopf algebra in the braided category $\\mathcal{B}$. Finally, we \nexplain how $Z$ refines the LMO functor, which is a TQFT-like functor extending \nthe Le-Murakami-Ohtsuki invariant","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2017-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/qt/155","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 12

Abstract

Using an extension of the Kontsevich integral to tangles in handlebodies similar to a construction given by Andersen, Mattes and Reshetikhin, we construct a functor $Z:\mathcal{B}\to \widehat{\mathbb{A}}$, where $\mathcal{B}$ is the category of bottom tangles in handlebodies and $\widehat{\mathbb{A}}$ is the degree-completion of the category $\mathbb{A}$ of Jacobi diagrams in handlebodies. As a symmetric monoidal linear category, $\mathbb{A}$ is the linear PROP governing "Casimir Hopf algebras", which are cocommutative Hopf algebras equipped with a primitive invariant symmetric 2-tensor. The functor $Z$ induces a canonical isomorphism $\hbox{gr}\mathcal{B} \cong \mathbb{A}$, where $\hbox{gr}\mathcal{B}$ is the associated graded of the Vassiliev-Goussarov filtration on $\mathcal{B}$. To each Drinfeld associator $\varphi$ we associate a ribbon quasi-Hopf algebra $H_\varphi$ in $\hbox{gr}\mathcal{B}$, and we prove that the braided Hopf algebra resulting from $H_\varphi$ by "transmutation" is precisely the image by $Z$ of a canonical Hopf algebra in the braided category $\mathcal{B}$. Finally, we explain how $Z$ refines the LMO functor, which is a TQFT-like functor extending the Le-Murakami-Ohtsuki invariant
柄体底缠结的Kontsevich积分
利用类似于Andersen, Mattes和Reshetikhin给出的构造的Kontsevich积分对手体内缠结的推广,我们构造了一个函子$Z:\mathcal{B}\to \widehat{\mathbb{A}}$,其中$\mathcal{B}$是手体内底缠结的范畴,$\widehat{\mathbb{A}}$是手体内Jacobi图的范畴$\mathbb{A}$的补全度。作为一个对称的一元线性范畴,$\mathbb{A}$是支配“Casimir Hopf代数”的线性PROP,它是具有原始不变对称2张量的协交换Hopf代数。函子$Z$诱导正则同构$\hbox{gr}\mathcal{B} \cong \mathbb{A}$,其中$\hbox{gr}\mathcal{B}$是$\mathcal{B}$上Vassiliev-Goussarov过滤的相关梯度。对于每个Drinfeld关联子$\varphi$,我们将$\hbox{gr}\mathcal{B}$中的一个带状拟Hopf代数$H_\varphi$关联起来,并证明了$H_\varphi$通过“嬗变”得到的辫状Hopf代数正是辫状范畴$\mathcal{B}$中正则Hopf代数的$Z$的像。最后,我们解释$Z$是如何改进LMO函子的,LMO函子是一个扩展Le-Murakami-Ohtsuki不变量的类tqft函子
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信