Comparing the Effectiveness of Robust Statistical Estimators of Proficiency Testing Schemes in Outlier Detection

Standards Pub Date : 2023-04-06 DOI:10.3390/standards3020010
D. Tsamatsoulis
{"title":"Comparing the Effectiveness of Robust Statistical Estimators of Proficiency Testing Schemes in Outlier Detection","authors":"D. Tsamatsoulis","doi":"10.3390/standards3020010","DOIUrl":null,"url":null,"abstract":"This study investigates the effectiveness of robust estimators of location and dispersion, used in proficiency testing and listed in ISO 13528:2015, in outlier detection. The models utilize (a) kernel density plots, (b) Z-factors, (c) Monte Carlo simulations, and (d) distributions derived from at most two contaminating distributions and one main Gaussian. The simulation parameters cover a wide range of those commonly encountered in proficiency testing (PT) schemes, so the results presented are of fairly general application. We chose a functional sub-optimal solution by grouping and classifying the model settings, resulting in five matrices readily usable for selecting the best robust estimator. Whenever at most half of the distribution of each contaminating population is outside the central distribution, there is only one optimal estimator. For all other cases, the five matrices provide the appropriate robust statistic. The proposed method applies to 95.1% of 144 results for an existing PT for cement. These actual datasets indicate that the Hampel estimator for the mean and the Q-method for the standard deviation provide the most appropriate performance statistic in 86.1% of the cases.","PeriodicalId":21933,"journal":{"name":"Standards","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Standards","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/standards3020010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the effectiveness of robust estimators of location and dispersion, used in proficiency testing and listed in ISO 13528:2015, in outlier detection. The models utilize (a) kernel density plots, (b) Z-factors, (c) Monte Carlo simulations, and (d) distributions derived from at most two contaminating distributions and one main Gaussian. The simulation parameters cover a wide range of those commonly encountered in proficiency testing (PT) schemes, so the results presented are of fairly general application. We chose a functional sub-optimal solution by grouping and classifying the model settings, resulting in five matrices readily usable for selecting the best robust estimator. Whenever at most half of the distribution of each contaminating population is outside the central distribution, there is only one optimal estimator. For all other cases, the five matrices provide the appropriate robust statistic. The proposed method applies to 95.1% of 144 results for an existing PT for cement. These actual datasets indicate that the Hampel estimator for the mean and the Q-method for the standard deviation provide the most appropriate performance statistic in 86.1% of the cases.
能力测试方案中稳健统计估计量在离群值检测中的有效性比较
本研究调查了在能力测试中使用的位置和分散的鲁棒估计器,并在ISO 13528:2015中列出,在离群值检测中的有效性。这些模型利用(a)核密度图,(b) z因子,(c)蒙特卡罗模拟,以及(d)最多由两个污染分布和一个主高斯分布导出的分布。模拟参数涵盖了能力测试(PT)方案中常见的各种参数,因此所提出的结果具有相当普遍的应用。通过对模型设置进行分组和分类,我们选择了一个功能次优解,从而产生了五个易于用于选择最佳鲁棒估计器的矩阵。当每个污染种群的分布最多有一半在中心分布之外时,只有一个最优估计量。对于所有其他情况,这五个矩阵提供了适当的健壮统计量。所提出的方法适用于现有水泥PT的144个结果中的95.1%。这些实际数据集表明,在86.1%的情况下,均值的Hampel估计器和标准差的q法提供了最合适的性能统计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信