Webcam-Based Accurate Eye-Central Localization

Hossain Mahbub Elahi, Didar Islam, Imtiaz Ahmed, Syoji Kobashi, Md Atiqur Rahman Ahad
{"title":"Webcam-Based Accurate Eye-Central Localization","authors":"Hossain Mahbub Elahi, Didar Islam, Imtiaz Ahmed, Syoji Kobashi, Md Atiqur Rahman Ahad","doi":"10.1109/RVSP.2013.19","DOIUrl":null,"url":null,"abstract":"This paper contains experimental procedure of webcam-based eye-tracker specially for low power devices. This paper consists of five processes. First one is background suppression for reducing average processing requirement. Second one is Haar-cascade feature-based face detection algorithm. Third one is geometrically eye-position determination. The fourth part is to detect and track eye-ball center using mean of gradient vector. The fifth and last step is to detect where the user looking. We simply calculate percentage of movement of eye to detect either it looking left, right, up or down. This procedure is highly effective with satisfactory accuracy. It also requires less processing power.","PeriodicalId":6585,"journal":{"name":"2013 Second International Conference on Robot, Vision and Signal Processing","volume":"45 1","pages":"47-50"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Second International Conference on Robot, Vision and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RVSP.2013.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper contains experimental procedure of webcam-based eye-tracker specially for low power devices. This paper consists of five processes. First one is background suppression for reducing average processing requirement. Second one is Haar-cascade feature-based face detection algorithm. Third one is geometrically eye-position determination. The fourth part is to detect and track eye-ball center using mean of gradient vector. The fifth and last step is to detect where the user looking. We simply calculate percentage of movement of eye to detect either it looking left, right, up or down. This procedure is highly effective with satisfactory accuracy. It also requires less processing power.
基于网络摄像头的眼中心精确定位
本文介绍了针对低功耗设备的基于网络摄像头的眼动仪的实验过程。本文包括五个过程。首先是降低平均处理要求的背景抑制。二是基于haar级联特征的人脸检测算法。三是几何眼位测定。第四部分是利用梯度向量均值检测和跟踪眼球中心。第五步也是最后一步是检测用户在看什么。我们只需计算眼球运动的百分比来检测它向左、向右、向上或向下看。该方法非常有效,精度令人满意。它还需要更少的处理能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信