Experimental Study of Aqueous Humor Flow in a Transparent Anterior Segment Phantom by Using PIV Technique

Q4 Biochemistry, Genetics and Molecular Biology
Wenjia Wang, Xiuqing Qian, Qi Li, Gong Zhang, Huangxuan Zhao, Tan Li, Yang Yu, Hongfang Song, Zhicheng Liu
{"title":"Experimental Study of Aqueous Humor Flow in a Transparent Anterior Segment Phantom by Using PIV Technique","authors":"Wenjia Wang, Xiuqing Qian, Qi Li, Gong Zhang, Huangxuan Zhao, Tan Li, Yang Yu, Hongfang Song, Zhicheng Liu","doi":"10.32604/MCB.2019.06393","DOIUrl":null,"url":null,"abstract":"Pupillary block is considered as an important cause of primary angle-closure glaucoma (PACG). In order to investigate the effect of pupillary block on the hydrodynamics of aqueous humor (AH) in anterior chamber (AC) and potential risks, a 3D printed eye model was developed to mimic the AH flow driven by fluid generation, the differential pressure between AC and posterior chambers (PC) and pupillary block. Particle image velocimetry technology was applied to visualize flow distribution. The results demonstrated obvious differences in AH flow with and without pupillary block. Under the normal condition (without pupillary block), the flow filed of AH was nearly symmetric in the AC. The highest flow velocity located at the central of AC when the differential pressure between AC and PC was under 5.83 Pa, while it appeared near the cornea and iris surface when the differential pressure was greater than 33.6 Pa. Once pupillary block occurred, two asymmetric vortices with different sizes were observed and the shear stress in the paracentral cornea and iris epithelium increased greatly. It can be concluded that the pupillary block and the elevated differential pressure between AC and PC could change the flow distribution and thus increase the risk of corneal endothelial cells detachment. This study could make a further understanding of the pathogenesis of PACG.","PeriodicalId":48719,"journal":{"name":"Molecular & Cellular Biomechanics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Biomechanics","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.32604/MCB.2019.06393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 3

Abstract

Pupillary block is considered as an important cause of primary angle-closure glaucoma (PACG). In order to investigate the effect of pupillary block on the hydrodynamics of aqueous humor (AH) in anterior chamber (AC) and potential risks, a 3D printed eye model was developed to mimic the AH flow driven by fluid generation, the differential pressure between AC and posterior chambers (PC) and pupillary block. Particle image velocimetry technology was applied to visualize flow distribution. The results demonstrated obvious differences in AH flow with and without pupillary block. Under the normal condition (without pupillary block), the flow filed of AH was nearly symmetric in the AC. The highest flow velocity located at the central of AC when the differential pressure between AC and PC was under 5.83 Pa, while it appeared near the cornea and iris surface when the differential pressure was greater than 33.6 Pa. Once pupillary block occurred, two asymmetric vortices with different sizes were observed and the shear stress in the paracentral cornea and iris epithelium increased greatly. It can be concluded that the pupillary block and the elevated differential pressure between AC and PC could change the flow distribution and thus increase the risk of corneal endothelial cells detachment. This study could make a further understanding of the pathogenesis of PACG.
透明前段幻体房水流动的PIV实验研究
瞳孔阻滞被认为是原发性闭角型青光眼(PACG)的重要病因。为了研究瞳孔阻滞对前房房水(AH)流体动力学的影响及其潜在风险,建立了3D打印眼模型,模拟流体生成、前房与后房(PC)压差和瞳孔阻滞驱动的AH流动。采用粒子图像测速技术对流动分布进行可视化。结果显示,有瞳孔阻滞和无瞳孔阻滞时,血气流量有明显差异。正常情况下(无瞳孔阻塞),AH流场在AC内接近对称,当AC与PC压差在5.83 Pa以下时,流速最高的位置位于AC中心,压差大于33.6 Pa时,流速最高的位置出现在角膜和虹膜表面附近。一旦发生瞳孔阻滞,观察到两个不同大小的不对称涡旋,中央旁角膜和虹膜上皮的剪切应力大大增加。可见,瞳孔阻滞及AC和PC压差升高可改变血流分布,从而增加角膜内皮细胞脱离的风险。本研究有助于进一步了解PACG的发病机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular & Cellular Biomechanics
Molecular & Cellular Biomechanics CELL BIOLOGYENGINEERING, BIOMEDICAL&-ENGINEERING, BIOMEDICAL
CiteScore
1.70
自引率
0.00%
发文量
21
期刊介绍: The field of biomechanics concerns with motion, deformation, and forces in biological systems. With the explosive progress in molecular biology, genomic engineering, bioimaging, and nanotechnology, there will be an ever-increasing generation of knowledge and information concerning the mechanobiology of genes, proteins, cells, tissues, and organs. Such information will bring new diagnostic tools, new therapeutic approaches, and new knowledge on ourselves and our interactions with our environment. It becomes apparent that biomechanics focusing on molecules, cells as well as tissues and organs is an important aspect of modern biomedical sciences. The aims of this journal are to facilitate the studies of the mechanics of biomolecules (including proteins, genes, cytoskeletons, etc.), cells (and their interactions with extracellular matrix), tissues and organs, the development of relevant advanced mathematical methods, and the discovery of biological secrets. As science concerns only with relative truth, we seek ideas that are state-of-the-art, which may be controversial, but stimulate and promote new ideas, new techniques, and new applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信