Challenges of order reduction techniques for problems involving polymorphic uncertainty

Q1 Mathematics
Dmytro Pivovarov, Kai Willner, Paul Steinmann, Stephan Brumme, Michael Müller, Tarin Srisupattarawanit, Georg-Peter Ostermeyer, Carla Henning, Tim Ricken, Steffen Kastian, Stefanie Reese, Dieter Moser, Lars Grasedyck, Jonas Biehler, Martin Pfaller, Wolfgang Wall, Thomas Kohlsche, Otto von Estorff, Robert Gruhlke, Martin Eigel, Max Ehre, Iason Papaioannou, Daniel Straub, Sigrid Leyendecker
{"title":"Challenges of order reduction techniques for problems involving polymorphic uncertainty","authors":"Dmytro Pivovarov,&nbsp;Kai Willner,&nbsp;Paul Steinmann,&nbsp;Stephan Brumme,&nbsp;Michael Müller,&nbsp;Tarin Srisupattarawanit,&nbsp;Georg-Peter Ostermeyer,&nbsp;Carla Henning,&nbsp;Tim Ricken,&nbsp;Steffen Kastian,&nbsp;Stefanie Reese,&nbsp;Dieter Moser,&nbsp;Lars Grasedyck,&nbsp;Jonas Biehler,&nbsp;Martin Pfaller,&nbsp;Wolfgang Wall,&nbsp;Thomas Kohlsche,&nbsp;Otto von Estorff,&nbsp;Robert Gruhlke,&nbsp;Martin Eigel,&nbsp;Max Ehre,&nbsp;Iason Papaioannou,&nbsp;Daniel Straub,&nbsp;Sigrid Leyendecker","doi":"10.1002/gamm.201900011","DOIUrl":null,"url":null,"abstract":"<p>Modeling of mechanical systems with uncertainties is extremely challenging and requires a careful analysis of a huge amount of data. Both, probabilistic modeling and nonprobabilistic modeling require either an extremely large ensemble of samples or the introduction of additional dimensions to the problem, thus, resulting also in an enormous computational cost growth. No matter whether the Monte-Carlo sampling or Smolyak's sparse grids are used, which may theoretically overcome the curse of dimensionality, the system evaluation must be performed at least hundreds of times. This becomes possible only by using reduced order modeling and surrogate modeling. Moreover, special approximation techniques are needed to analyze the input data and to produce a parametric model of the system's uncertainties. In this paper, we describe the main challenges of approximation of uncertain data, order reduction, and surrogate modeling specifically for problems involving polymorphic uncertainty. Thereby some examples are presented to illustrate the challenges and solution methods.</p>","PeriodicalId":53634,"journal":{"name":"GAMM Mitteilungen","volume":"42 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/gamm.201900011","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GAMM Mitteilungen","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gamm.201900011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6

Abstract

Modeling of mechanical systems with uncertainties is extremely challenging and requires a careful analysis of a huge amount of data. Both, probabilistic modeling and nonprobabilistic modeling require either an extremely large ensemble of samples or the introduction of additional dimensions to the problem, thus, resulting also in an enormous computational cost growth. No matter whether the Monte-Carlo sampling or Smolyak's sparse grids are used, which may theoretically overcome the curse of dimensionality, the system evaluation must be performed at least hundreds of times. This becomes possible only by using reduced order modeling and surrogate modeling. Moreover, special approximation techniques are needed to analyze the input data and to produce a parametric model of the system's uncertainties. In this paper, we describe the main challenges of approximation of uncertain data, order reduction, and surrogate modeling specifically for problems involving polymorphic uncertainty. Thereby some examples are presented to illustrate the challenges and solution methods.

涉及多态不确定性问题的降阶技术的挑战
具有不确定性的机械系统建模极具挑战性,需要对大量数据进行仔细分析。概率建模和非概率建模都需要一个非常大的样本集合,或者向问题引入额外的维度,因此,也会导致巨大的计算成本增长。无论使用蒙特卡罗采样还是Smolyak的稀疏网格,理论上都可以克服维数的诅咒,系统评估必须至少进行数百次。这只能通过使用简化顺序建模和代理建模来实现。此外,需要特殊的近似技术来分析输入数据并产生系统不确定性的参数模型。在本文中,我们描述了不确定数据的近似、阶数约简和代理建模的主要挑战,特别是涉及多态不确定性的问题。因此,通过实例说明了面临的挑战和解决方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
GAMM Mitteilungen
GAMM Mitteilungen Mathematics-Applied Mathematics
CiteScore
8.80
自引率
0.00%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信