Haar-like filtering based speech detection using integral signal for sensornet

J. Nishimura, T. Kuroda
{"title":"Haar-like filtering based speech detection using integral signal for sensornet","authors":"J. Nishimura, T. Kuroda","doi":"10.1109/ICSENST.2008.4757072","DOIUrl":null,"url":null,"abstract":"Speech detection using Haar - like filtering is proposed as a new and very low calculation cost method for sensornet applications. The simple Haar - like filters having variable filter width and shift width are trained to learn appropriate filter parameters from the training samples to detect speech. To further decrease the calculation cost, the use of intermediate signal representation called ldquointegral signalrdquo is proposed. Our method yielded speech/nonspeech classification accuracy of 97.44% for the input length of 0.1 s. Compared with high performance feature extraction method MFCC (mel-frequency cepstrum coefficient), the proposed haar-like filtering can be approximately 93.71% efficient in terms of the total amount of add and multiply calculations while capable of achieving the error rate of only 2.56% relative to MFCC.","PeriodicalId":6299,"journal":{"name":"2008 3rd International Conference on Sensing Technology","volume":"11 1","pages":"52-56"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 3rd International Conference on Sensing Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENST.2008.4757072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Speech detection using Haar - like filtering is proposed as a new and very low calculation cost method for sensornet applications. The simple Haar - like filters having variable filter width and shift width are trained to learn appropriate filter parameters from the training samples to detect speech. To further decrease the calculation cost, the use of intermediate signal representation called ldquointegral signalrdquo is proposed. Our method yielded speech/nonspeech classification accuracy of 97.44% for the input length of 0.1 s. Compared with high performance feature extraction method MFCC (mel-frequency cepstrum coefficient), the proposed haar-like filtering can be approximately 93.71% efficient in terms of the total amount of add and multiply calculations while capable of achieving the error rate of only 2.56% relative to MFCC.
基于haar滤波的传感器积分信号语音检测
基于类哈尔滤波的语音检测是一种新的、计算成本极低的传感器检测方法。对具有可变滤波器宽度和移位宽度的简单Haar类滤波器进行训练,从训练样本中学习适当的滤波器参数来检测语音。为了进一步降低计算成本,提出了一种称为ldq积分信号的中间信号表示方法。当输入长度为0.1 s时,我们的方法产生了97.44%的语音/非语音分类准确率。与高性能的特征提取方法MFCC (mel-frequency倒谱系数)相比,所提出的类哈尔滤波在加乘计算总量上的效率约为93.71%,而错误率仅为2.56%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信