Ore‐forming process of the Haigou gold deposit in the eastern Central Asian Orogenic Belt, NE China: Constrains from EPMA and LA‐ICP‐MS analysis of Au‐bearing pyrite
Yuan-Wei Chen, Huan Li, Chaoyang Zheng, S. M. Elatikpo, Shanlin Cheng, Wenting Jiang
{"title":"Ore‐forming process of the Haigou gold deposit in the eastern Central Asian Orogenic Belt, NE China: Constrains from EPMA and LA‐ICP‐MS analysis of Au‐bearing pyrite","authors":"Yuan-Wei Chen, Huan Li, Chaoyang Zheng, S. M. Elatikpo, Shanlin Cheng, Wenting Jiang","doi":"10.1111/rge.12304","DOIUrl":null,"url":null,"abstract":"The Haigou lode deposit, containing 40 t of gold at an average grade of 3.5 g/t, is one of the largest deposits in the Jiapigou gold belt located along the eastern segment of the northern margin of the North China Craton. The deposit comprises 15 gold‐bearing quartz veins hosted in a Carboniferous monzonite–monzogranite stock. Although many studies relating the genesis of this deposit have been carried previously, the understanding of ore‐forming process remains controversial. In this study, we combined field geological mapping with petrography, Electron Probe Micro Analysis (EPMA) and in situ LA‐ICP‐MS analysis of gold‐bearing pyrite to provide new insight into the genesis of the gold deposit. Our results show that Au in the Haigou gold deposit mainly exists in the form of native gold. LA‐ICP‐MS in situ multi‐element mapping shows that Au has a significant positive correlation with Ag, Te, Bi and Pb in Au‐bearing pyrite, indicating that these elements co‐precipitated with Au in pyrite lattice. The ore‐forming fluid existed under medium to low temperature, aiding complexing of the gold with sulfur, chlorine, and tellurium. Decoupling of sulfide and telluride complexes facilitated gold precipitation in the Haigou area. The abundance of lead and nickel tellurides in the Haigou gold deposits with general absence of tellurium in native gold is indicative of expulsion of tellurium through boiling during the process of fluid migration and evolution. Also, coexistence of Bi in native gold indicates that they were at Au–Bi eutectic. The gold‐bearing pyrite is characterized by dispersed magnetite in and around the fractures. The Au–Te–Bi–Pb element anomalies indicate that fluid oxygen fugacity increases while sulfur fugacity decreases with time, resulting in Au precipitation. Our results provide a new theoretical basis for the establishment of metallogenic model and deep prospecting of the Haigou gold deposit.","PeriodicalId":21089,"journal":{"name":"Resource Geology","volume":"3 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resource Geology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1111/rge.12304","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 5
Abstract
The Haigou lode deposit, containing 40 t of gold at an average grade of 3.5 g/t, is one of the largest deposits in the Jiapigou gold belt located along the eastern segment of the northern margin of the North China Craton. The deposit comprises 15 gold‐bearing quartz veins hosted in a Carboniferous monzonite–monzogranite stock. Although many studies relating the genesis of this deposit have been carried previously, the understanding of ore‐forming process remains controversial. In this study, we combined field geological mapping with petrography, Electron Probe Micro Analysis (EPMA) and in situ LA‐ICP‐MS analysis of gold‐bearing pyrite to provide new insight into the genesis of the gold deposit. Our results show that Au in the Haigou gold deposit mainly exists in the form of native gold. LA‐ICP‐MS in situ multi‐element mapping shows that Au has a significant positive correlation with Ag, Te, Bi and Pb in Au‐bearing pyrite, indicating that these elements co‐precipitated with Au in pyrite lattice. The ore‐forming fluid existed under medium to low temperature, aiding complexing of the gold with sulfur, chlorine, and tellurium. Decoupling of sulfide and telluride complexes facilitated gold precipitation in the Haigou area. The abundance of lead and nickel tellurides in the Haigou gold deposits with general absence of tellurium in native gold is indicative of expulsion of tellurium through boiling during the process of fluid migration and evolution. Also, coexistence of Bi in native gold indicates that they were at Au–Bi eutectic. The gold‐bearing pyrite is characterized by dispersed magnetite in and around the fractures. The Au–Te–Bi–Pb element anomalies indicate that fluid oxygen fugacity increases while sulfur fugacity decreases with time, resulting in Au precipitation. Our results provide a new theoretical basis for the establishment of metallogenic model and deep prospecting of the Haigou gold deposit.
期刊介绍:
Resource Geology is an international journal focusing on economic geology, geochemistry and environmental geology. Its purpose is to contribute to the promotion of earth sciences related to metallic and non-metallic mineral deposits mainly in Asia, Oceania and the Circum-Pacific region, although other parts of the world are also considered.
Launched in 1998 by the Society for Resource Geology, the journal is published quarterly in English, making it more accessible to the international geological community. The journal publishes high quality papers of interest to those engaged in research and exploration of mineral deposits.