Simulation of quantum dot based single-photon sources using the Schrödinger-Poisson-Drift-Diffusion-Lindblad system

M. Kantner, T. Koprucki, H. Wünsche, U. Bandelow
{"title":"Simulation of quantum dot based single-photon sources using the Schrödinger-Poisson-Drift-Diffusion-Lindblad system","authors":"M. Kantner, T. Koprucki, H. Wünsche, U. Bandelow","doi":"10.1109/SISPAD.2019.8870459","DOIUrl":null,"url":null,"abstract":"The device-scale simulation of electrically driven quantum light sources based on semiconductor quantum dots requires a combination of the (semi-)classical semiconductor device equations with cavity quantum electrodynamics. We present a comprehensive quantum-classical simulation approach that self-consistently couples the (semi-)classical drift-diffusion system to a Lindblad-type quantum master equation. This allows to describe the spatially resolved carrier transport in complex, multi-dimensional device geometries along with the fully quantum-mechanical light-matter interaction in the quantum dot-cavity system. The latter gives access to important quantum optical figures of merit, in particular the second-order correlation function of the emitted radiation. In order to account for the quantum confined Stark effect in the device’s internal electric field, the system is solved along with a Schrödinger–Poisson problem, that describes the envelope wave functions and energy levels of the quantum dot carriers. The approach is demonstrated by numerical simulations of a single-photon emitting diode.","PeriodicalId":6755,"journal":{"name":"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"22 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2019.8870459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The device-scale simulation of electrically driven quantum light sources based on semiconductor quantum dots requires a combination of the (semi-)classical semiconductor device equations with cavity quantum electrodynamics. We present a comprehensive quantum-classical simulation approach that self-consistently couples the (semi-)classical drift-diffusion system to a Lindblad-type quantum master equation. This allows to describe the spatially resolved carrier transport in complex, multi-dimensional device geometries along with the fully quantum-mechanical light-matter interaction in the quantum dot-cavity system. The latter gives access to important quantum optical figures of merit, in particular the second-order correlation function of the emitted radiation. In order to account for the quantum confined Stark effect in the device’s internal electric field, the system is solved along with a Schrödinger–Poisson problem, that describes the envelope wave functions and energy levels of the quantum dot carriers. The approach is demonstrated by numerical simulations of a single-photon emitting diode.
利用Schrödinger-Poisson-Drift-Diffusion-Lindblad系统模拟基于量子点的单光子源
基于半导体量子点的电驱动量子光源的器件级模拟需要将(半)经典半导体器件方程与腔量子电动力学相结合。我们提出了一种综合的量子经典模拟方法,该方法将(半)经典漂移扩散系统自洽地耦合到lindblade型量子主方程。这允许描述复杂的空间分辨载流子输运,多维器件几何以及量子点腔系统中完全量子力学的光-物质相互作用。后者提供了获得重要的量子光学数字的机会,特别是发射辐射的二阶相关函数。为了解释设备内部电场中的量子受限斯塔克效应,该系统与Schrödinger-Poisson问题一起解决,该问题描述了量子点载流子的包络波函数和能级。通过单光子发光二极管的数值模拟验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信