{"title":"Geodetic and Geological Deformation of the Island Arc in Northeast Japan Revealed by the 2011 Tohoku Earthquake","authors":"T. Sagiya, A. Meneses‐Gutierrez","doi":"10.1146/annurev-earth-032320-074429","DOIUrl":null,"url":null,"abstract":"Northeast Japan is a typical island arc related to the Pacific plate subduction. The 2011 Mw 9.0 Tohoku-oki earthquake provided a unique opportunity to analyze crustal deformation with different boundary conditions, similar to a gigantic rock deformation experiment. We review findings obtained through various observations and data analyses in Northeast Japan, focusing on the crustal deformation in different timescales. The occurrence of the M9 earthquake solved the ongoing paradox that the geodetic strain rate is an order of magnitude larger than the geologic estimate, showing that the centennial geodetic observation had mainly captured the elastic strain accumulation. Along the localized contraction zone along the Japan Sea coast, a comparison of postseismic and interseismic deformation patterns revealed a significant contribution of inelastic deformation, which plays an essential role in long-term deformation. Along the Pacific coast, rapid interseismic subsidence and unexpected coseismic subsidence were followed by a rapid postseismic uplift, indicating that viscous relaxation in the mantle is of essential importance. These findings advance our understanding of plate interactions and the tectonic evolution of the island arc. ▪ The 2011 Tohoku-oki earthquake provided the most complete crustal deformation data set ever for interseismic, coseismic, and postseismic periods. ▪ The discrepancy between the geologic and geodetic deformation rates in Northeast Japan is attributed to an elastic strain due to interplate locking. ▪ A significant contribution of inelastic deformation in the island arc crust is identified through a comparison of interseismic and postseismic deformations. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 50 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"116 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Earth and Planetary Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1146/annurev-earth-032320-074429","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 5
Abstract
Northeast Japan is a typical island arc related to the Pacific plate subduction. The 2011 Mw 9.0 Tohoku-oki earthquake provided a unique opportunity to analyze crustal deformation with different boundary conditions, similar to a gigantic rock deformation experiment. We review findings obtained through various observations and data analyses in Northeast Japan, focusing on the crustal deformation in different timescales. The occurrence of the M9 earthquake solved the ongoing paradox that the geodetic strain rate is an order of magnitude larger than the geologic estimate, showing that the centennial geodetic observation had mainly captured the elastic strain accumulation. Along the localized contraction zone along the Japan Sea coast, a comparison of postseismic and interseismic deformation patterns revealed a significant contribution of inelastic deformation, which plays an essential role in long-term deformation. Along the Pacific coast, rapid interseismic subsidence and unexpected coseismic subsidence were followed by a rapid postseismic uplift, indicating that viscous relaxation in the mantle is of essential importance. These findings advance our understanding of plate interactions and the tectonic evolution of the island arc. ▪ The 2011 Tohoku-oki earthquake provided the most complete crustal deformation data set ever for interseismic, coseismic, and postseismic periods. ▪ The discrepancy between the geologic and geodetic deformation rates in Northeast Japan is attributed to an elastic strain due to interplate locking. ▪ A significant contribution of inelastic deformation in the island arc crust is identified through a comparison of interseismic and postseismic deformations. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 50 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
期刊介绍:
Since its establishment in 1973, the Annual Review of Earth and Planetary Sciences has been dedicated to providing comprehensive coverage of advancements in the field. This esteemed publication examines various aspects of earth and planetary sciences, encompassing climate, environment, geological hazards, planet formation, and the evolution of life. To ensure wider accessibility, the latest volume of the journal has transitioned from a gated model to open access through the Subscribe to Open program by Annual Reviews. Consequently, all articles published in this volume are now available under the Creative Commons Attribution (CC BY) license.