Senolytics Reduce Endothelial Cell DNA Damage and Telomere Dysfunction Despite Reductions in Telomere Length.

Aging Biology Pub Date : 2023-01-01 Epub Date: 2023-06-27 DOI:10.59368/agingbio.20230007
Samuel I Bloom, Eric Tuday, Torikul Islam, Venkateswara R Gogulamudi, Lisa A Lesniewski, Anthony J Donato
{"title":"Senolytics Reduce Endothelial Cell DNA Damage and Telomere Dysfunction Despite Reductions in Telomere Length.","authors":"Samuel I Bloom, Eric Tuday, Torikul Islam, Venkateswara R Gogulamudi, Lisa A Lesniewski, Anthony J Donato","doi":"10.59368/agingbio.20230007","DOIUrl":null,"url":null,"abstract":"<p><p>Aging results in cellular damage that can induce cell cycle arrest known as cellular senescence. Endothelial cells are one of the first cell types to become senescent in advancing age and contribute to age-related cardiovascular diseases. Drugs known as senolytics reduce endothelial cell senescence in cell culture. From a translational perspective, a key question is whether this occurs <i>in vivo</i> and if remaining cells appear healthier and display fewer hallmarks of cellular aging. In this study, we treated old mice with the senolytic cocktail dasatinib and quercetin (D+Q) or a vehicle control. In 24-month-old mice, D+Q treatment reduced <i>p21</i> gene expression in carotid artery endothelial cells, indicative of reductions in senescence. In lung endothelial cells, we examined DNA damage, telomere dysfunction (DNA damage signaling at telomeres), and telomere length, which are hallmarks of aging associated with senescence and other deleterious effects on cellular function. D+Q treatment resulted in fewer endothelial cells with DNA damage and dysfunctional telomeres. Surprisingly, D+Q reduced endothelial cell telomere length, yet this did not result in critically short telomeres and thus telomere dysfunction. Mice have longer telomeres than humans; therefore, future studies on the effect of senolytics on telomere length are warranted. Collectively, this study provides important evidence on the effect of senolytics, including that they clear senescent endothelial cells <i>in vivo</i>, which reduces DNA damage and telomere dysfunction. These data indicate that the clearing of senescent endothelial cells in old age leaves behind a population of cells that exhibit fewer hallmarks of vascular aging.</p>","PeriodicalId":72130,"journal":{"name":"Aging Biology","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11922086/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59368/agingbio.20230007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aging results in cellular damage that can induce cell cycle arrest known as cellular senescence. Endothelial cells are one of the first cell types to become senescent in advancing age and contribute to age-related cardiovascular diseases. Drugs known as senolytics reduce endothelial cell senescence in cell culture. From a translational perspective, a key question is whether this occurs in vivo and if remaining cells appear healthier and display fewer hallmarks of cellular aging. In this study, we treated old mice with the senolytic cocktail dasatinib and quercetin (D+Q) or a vehicle control. In 24-month-old mice, D+Q treatment reduced p21 gene expression in carotid artery endothelial cells, indicative of reductions in senescence. In lung endothelial cells, we examined DNA damage, telomere dysfunction (DNA damage signaling at telomeres), and telomere length, which are hallmarks of aging associated with senescence and other deleterious effects on cellular function. D+Q treatment resulted in fewer endothelial cells with DNA damage and dysfunctional telomeres. Surprisingly, D+Q reduced endothelial cell telomere length, yet this did not result in critically short telomeres and thus telomere dysfunction. Mice have longer telomeres than humans; therefore, future studies on the effect of senolytics on telomere length are warranted. Collectively, this study provides important evidence on the effect of senolytics, including that they clear senescent endothelial cells in vivo, which reduces DNA damage and telomere dysfunction. These data indicate that the clearing of senescent endothelial cells in old age leaves behind a population of cells that exhibit fewer hallmarks of vascular aging.

利用单细胞全基因组测序分析衰老细胞的体细胞突变
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信