Kwang-Seong Choi, Y. Eom, Seok-Hwan Moon, Jiho Joo, leeseul Jeong, Kwangjoo Lee, Jung Hak Kim, Ju Hyeon Kim, G. Yoon, Kwang-Hee Lee, Chul-Hee Lee, Geun-Sik Ahn, Moo-Sup Shim
{"title":"Enhanced Performance of Laser-Assisted Bonding with Compression (LABC) Compared with Thermal Compression Bonding (TCB) Technology","authors":"Kwang-Seong Choi, Y. Eom, Seok-Hwan Moon, Jiho Joo, leeseul Jeong, Kwangjoo Lee, Jung Hak Kim, Ju Hyeon Kim, G. Yoon, Kwang-Hee Lee, Chul-Hee Lee, Geun-Sik Ahn, Moo-Sup Shim","doi":"10.1109/ECTC.2019.00037","DOIUrl":null,"url":null,"abstract":"A LABC (Laser-Assisted Bonding with Compression) bonder and NCF (Non-Conductive Film) were developed to increase the productivity of the bonding process for the advanced microelectronic packaging technology. The design features of a LABC make its UPH above 1,000. The NCF was applied to both of LAB and TCB (Thermal Compression Bonding Technology). The 780µm-thick daisy chain top and bottom chips with the minimum pitch of 30µm and bump number of about 27,000 were prepared and tested to verify the LABC and NCF technology. The effects of the laser power on the joints quality after the LABC bonding process were investigated and compared with the joints formed by the TCB technology. Finally, the SAT (Scanning Acoustic Tomography) images of the test vehicles before and after the TCO (Pressurized oven) were observed to check the voids in the NCF after the LABC bonding process.","PeriodicalId":6726,"journal":{"name":"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)","volume":"68 1","pages":"197-203"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2019.00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
A LABC (Laser-Assisted Bonding with Compression) bonder and NCF (Non-Conductive Film) were developed to increase the productivity of the bonding process for the advanced microelectronic packaging technology. The design features of a LABC make its UPH above 1,000. The NCF was applied to both of LAB and TCB (Thermal Compression Bonding Technology). The 780µm-thick daisy chain top and bottom chips with the minimum pitch of 30µm and bump number of about 27,000 were prepared and tested to verify the LABC and NCF technology. The effects of the laser power on the joints quality after the LABC bonding process were investigated and compared with the joints formed by the TCB technology. Finally, the SAT (Scanning Acoustic Tomography) images of the test vehicles before and after the TCO (Pressurized oven) were observed to check the voids in the NCF after the LABC bonding process.