A 90 nm generation copper dual damascene technology with ALD TaN barrier

C.H. Peng, C. Hsieh, C.L. Huang, J.C. Lin, M. Tsai, M.W. Lin, C. Chang, W. Shue, M. Liang
{"title":"A 90 nm generation copper dual damascene technology with ALD TaN barrier","authors":"C.H. Peng, C. Hsieh, C.L. Huang, J.C. Lin, M. Tsai, M.W. Lin, C. Chang, W. Shue, M. Liang","doi":"10.1109/IEDM.2002.1175913","DOIUrl":null,"url":null,"abstract":"As the device dimension continues to shrink, the need for a thinner barrier for copper has risen in order to meet the requirements for future device performance. The conventional barrier process by physical vapor deposition (PVD) has the limitation to achieve conformal step coverage across the dual damascene structure , and therefore would face a bottleneck when the thickness reduction is required. In this work, the atomic layer deposition (ALD) technique is applied for the TaN barrier process of a 90 nm generation copper dual damascene integration with low-k dielectrics of k=3.0. The ALD technique could not only provide a conformal step coverage on both trenches and vias, it could also allows reasonable thickness control for thickness of the order of 10 /spl Aring/. The integration results show that ALD TaN has promising electrical performance on sheet resistance, via resistance, and line-to-line leakage, and it also has superior reliability performance on electromigration, stress migration, and bias temperature test as compared with conventional PVD TaN.","PeriodicalId":74909,"journal":{"name":"Technical digest. International Electron Devices Meeting","volume":"6 1","pages":"603-606"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical digest. International Electron Devices Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2002.1175913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

As the device dimension continues to shrink, the need for a thinner barrier for copper has risen in order to meet the requirements for future device performance. The conventional barrier process by physical vapor deposition (PVD) has the limitation to achieve conformal step coverage across the dual damascene structure , and therefore would face a bottleneck when the thickness reduction is required. In this work, the atomic layer deposition (ALD) technique is applied for the TaN barrier process of a 90 nm generation copper dual damascene integration with low-k dielectrics of k=3.0. The ALD technique could not only provide a conformal step coverage on both trenches and vias, it could also allows reasonable thickness control for thickness of the order of 10 /spl Aring/. The integration results show that ALD TaN has promising electrical performance on sheet resistance, via resistance, and line-to-line leakage, and it also has superior reliability performance on electromigration, stress migration, and bias temperature test as compared with conventional PVD TaN.
90纳米代铜双大马士革技术与ALD TaN屏障
随着设备尺寸的不断缩小,为了满足未来设备性能的要求,对更薄的铜屏障的需求也在增加。传统的物理气相沉积(PVD)阻挡工艺在实现双衬底结构的保形步长覆盖方面存在局限性,因此当需要减小厚度时将面临瓶颈。本文将原子层沉积(ALD)技术应用于低k介电体k=3.0的90 nm代铜双damascene集成的TaN势垒工艺。ALD技术不仅可以在沟槽和通孔上提供保形阶跃覆盖,还可以对厚度进行合理的控制,厚度可达10 /spl / /级。集成结果表明,与传统PVD TaN相比,ALD TaN在片阻、通孔电阻和线间漏损方面具有良好的电学性能,在电迁移、应力迁移和偏置温度测试方面也具有优越的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信