A Novel Deep Convolution Neural Network Model for CT Image Classification Based on COVID-19

Jingrong Wang, Limeng Lu, Zixiang Zhang, Nady Slam
{"title":"A Novel Deep Convolution Neural Network Model for CT Image Classification Based on COVID-19","authors":"Jingrong Wang, Limeng Lu, Zixiang Zhang, Nady Slam","doi":"10.1109/cvidliccea56201.2022.9824838","DOIUrl":null,"url":null,"abstract":"Since the outbreak of novel coronavirus pneumonia (COVID-19) in 2019, normal learning and living have been severely affected, and human life and health have been seriously threatened. Therefore, it is crucial to diagnose the novel coronavirus pneumonia rapidly and efficiently. In this study, based on the classical image classification neural network model, a novel deep convolutional neural network model based on the attention mechanism is proposed and named the LACNN_CBAM model. The accuracy Acc, precision Pre, recall Rec and F-1 scores of the model in the public dataset collated from published papers are 0.989, 0.992, 0.992, and 0.992, which are respectively higher than existing learning models. The model determines whether a patient has COVID-19 and community-acquired pneumonia by patient’s CT images. The effectiveness of the model was demonstrated by experimental results on a clinical dataset. We believe that the model proposed in this paper can help physicians to diagnose COVID-19 and community-acquired pneumonia efficiently and accurately in reality.","PeriodicalId":23649,"journal":{"name":"Vision","volume":"105 1","pages":"15-20"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cvidliccea56201.2022.9824838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Since the outbreak of novel coronavirus pneumonia (COVID-19) in 2019, normal learning and living have been severely affected, and human life and health have been seriously threatened. Therefore, it is crucial to diagnose the novel coronavirus pneumonia rapidly and efficiently. In this study, based on the classical image classification neural network model, a novel deep convolutional neural network model based on the attention mechanism is proposed and named the LACNN_CBAM model. The accuracy Acc, precision Pre, recall Rec and F-1 scores of the model in the public dataset collated from published papers are 0.989, 0.992, 0.992, and 0.992, which are respectively higher than existing learning models. The model determines whether a patient has COVID-19 and community-acquired pneumonia by patient’s CT images. The effectiveness of the model was demonstrated by experimental results on a clinical dataset. We believe that the model proposed in this paper can help physicians to diagnose COVID-19 and community-acquired pneumonia efficiently and accurately in reality.
基于COVID-19的CT图像分类新深度卷积神经网络模型
2019年新型冠状病毒肺炎(COVID-19)疫情爆发以来,正常的学习生活受到严重影响,人类生命健康受到严重威胁。因此,快速有效地诊断新型冠状病毒肺炎至关重要。本研究在经典图像分类神经网络模型的基础上,提出了一种新的基于注意机制的深度卷积神经网络模型,命名为LACNN_CBAM模型。该模型在公开数据集中的准确率Acc、精度Pre、召回率Rec和F-1得分分别为0.989、0.992、0.992和0.992,均高于现有的学习模型。该模型通过患者的CT图像判断患者是否患有COVID-19和社区获得性肺炎。在临床数据集上的实验结果验证了该模型的有效性。我们认为,本文提出的模型可以帮助医生在现实中高效准确地诊断COVID-19和社区获得性肺炎。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信