GPU-Based Batch LU-Factorization Solver for Concurrent Analysis of Massive Power Flows

Gan Zhou, Rui Bo, Lungsheng Chien
{"title":"GPU-Based Batch LU-Factorization Solver for Concurrent Analysis of Massive Power Flows","authors":"Gan Zhou, Rui Bo, Lungsheng Chien","doi":"10.1109/TDC.2018.8440513","DOIUrl":null,"url":null,"abstract":"In many power system applications such as N-x static security analysis and Monte-Carlo-simulation-based probabilistic power flow (PF) analysis, it is a very time consuming task to analyze massive number of power flows (PF) on identical or similar network topology. This letter presents a novel GPU-accelerated batch LU-factorization solver that achieves higher level of parallelism and better memory-access efficiency through packaging massive number of LU-factorization tasks to formulate a new larger-scale problem. The proposed solver can achieve up to 76 times speedup when compared to KLU library and lays a critical foundation for massive-PFs-solving applications.","PeriodicalId":6568,"journal":{"name":"2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)","volume":"13 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TDC.2018.8440513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In many power system applications such as N-x static security analysis and Monte-Carlo-simulation-based probabilistic power flow (PF) analysis, it is a very time consuming task to analyze massive number of power flows (PF) on identical or similar network topology. This letter presents a novel GPU-accelerated batch LU-factorization solver that achieves higher level of parallelism and better memory-access efficiency through packaging massive number of LU-factorization tasks to formulate a new larger-scale problem. The proposed solver can achieve up to 76 times speedup when compared to KLU library and lays a critical foundation for massive-PFs-solving applications.
基于gpu的海量潮流并行分析批量lu分解求解器
在许多电力系统应用中,如N-x静态安全分析和基于蒙特卡罗模拟的概率潮流分析,分析相同或相似网络拓扑上的大量潮流是一项非常耗时的任务。本文提出了一种新型的gpu加速批量lu分解求解器,通过封装大量的lu分解任务来制定一个新的更大规模的问题,实现了更高的并行性和更好的内存访问效率。与KLU库相比,该求解器可以实现高达76倍的加速,为大规模pfs求解应用奠定了重要基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信