Physiological and pathological/ectopic mineralization: from composition to microstructure

IF 3.3 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
Yuqing Mu, W. Gao, Yinghong Zhou, Lan Xiao, Yin Xiao
{"title":"Physiological and pathological/ectopic mineralization: from composition to microstructure","authors":"Yuqing Mu, W. Gao, Yinghong Zhou, Lan Xiao, Yin Xiao","doi":"10.20517/microstructures.2023.05","DOIUrl":null,"url":null,"abstract":"Biomineralization is a process that leads to the formation of hierarchically arranged structures in mineralized tissues, such as bone and teeth. Extensive research has been conducted on the crystals in bones and teeth, with the aim of understanding the underlying mechanisms of the mineralization process. Pathological/ectopic mineralization, such as kidney stones, calcific tendinitis, and skeletal fluorosis, shares some similar features but different mechanisms to physiological mineralization. A better understanding will provide new perspectives for treating pathological/ectopic mineralization-related diseases. This review provides an overview of the mechanisms of the crystallization and growth of crystals in physiological and pathological conditions from a chemistry perspective. By linking the microstructures and functions of crystals formed in both conditions, potential approaches are proposed to treat pathological/ectopic mineralization-related diseases.","PeriodicalId":22044,"journal":{"name":"Superlattices and Microstructures","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superlattices and Microstructures","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.20517/microstructures.2023.05","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 2

Abstract

Biomineralization is a process that leads to the formation of hierarchically arranged structures in mineralized tissues, such as bone and teeth. Extensive research has been conducted on the crystals in bones and teeth, with the aim of understanding the underlying mechanisms of the mineralization process. Pathological/ectopic mineralization, such as kidney stones, calcific tendinitis, and skeletal fluorosis, shares some similar features but different mechanisms to physiological mineralization. A better understanding will provide new perspectives for treating pathological/ectopic mineralization-related diseases. This review provides an overview of the mechanisms of the crystallization and growth of crystals in physiological and pathological conditions from a chemistry perspective. By linking the microstructures and functions of crystals formed in both conditions, potential approaches are proposed to treat pathological/ectopic mineralization-related diseases.
生理和病理/异位矿化:从组成到微观结构
生物矿化是导致在矿化组织(如骨和牙齿)中形成分层排列结构的过程。为了了解矿化过程的潜在机制,人们对骨骼和牙齿中的晶体进行了广泛的研究。病理性/异位矿化,如肾结石、钙化性肌腱炎和氟骨症,与生理性矿化有一些相似的特征,但机制不同。更好的理解将为治疗病理性/异位矿化相关疾病提供新的视角。本文从化学角度综述了晶体在生理和病理条件下的结晶和生长机制。通过将这两种情况下形成的晶体的微观结构和功能联系起来,提出了治疗病理性/异位矿化相关疾病的潜在方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Superlattices and Microstructures
Superlattices and Microstructures 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.20%
发文量
35
审稿时长
2.8 months
期刊介绍: Micro and Nanostructures is a journal disseminating the science and technology of micro-structures and nano-structures in materials and their devices, including individual and collective use of semiconductors, metals and insulators for the exploitation of their unique properties. The journal hosts papers dealing with fundamental and applied experimental research as well as theoretical studies. Fields of interest, including emerging ones, cover: • Novel micro and nanostructures • Nanomaterials (nanowires, nanodots, 2D materials ) and devices • Synthetic heterostructures • Plasmonics • Micro and nano-defects in materials (semiconductor, metal and insulators) • Surfaces and interfaces of thin films In addition to Research Papers, the journal aims at publishing Topical Reviews providing insights into rapidly evolving or more mature fields. Written by leading researchers in their respective fields, those articles are commissioned by the Editorial Board. Formerly known as Superlattices and Microstructures, with a 2021 IF of 3.22 and 2021 CiteScore of 5.4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信