Matched subspace detectors for discrimination of targets from trees in SAR imagery

A. Sharma, R. Moses
{"title":"Matched subspace detectors for discrimination of targets from trees in SAR imagery","authors":"A. Sharma, R. Moses","doi":"10.1109/ACSSC.2000.911282","DOIUrl":null,"url":null,"abstract":"We investigate the use of subspace-based detectors for discriminating vehicles from trees in low frequency synthetic aperture imagery. We model tree scattering as structured isotropic interference responses and model dominant vehicle scattering as dihedral responses. We form linear subspaces of tree and target responses, and apply subspace-based detection methods developed by Scharf and Friedlander (1994). Analysis on synthetic tree and target models show the viability of this approach. Preliminary results on measured imagery provide lower performance, suggesting the need for improved data calibration and improved scattering models of trees at low frequencies.","PeriodicalId":10581,"journal":{"name":"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)","volume":"16 1","pages":"1721-1726 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"2000-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2000.911282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We investigate the use of subspace-based detectors for discriminating vehicles from trees in low frequency synthetic aperture imagery. We model tree scattering as structured isotropic interference responses and model dominant vehicle scattering as dihedral responses. We form linear subspaces of tree and target responses, and apply subspace-based detection methods developed by Scharf and Friedlander (1994). Analysis on synthetic tree and target models show the viability of this approach. Preliminary results on measured imagery provide lower performance, suggesting the need for improved data calibration and improved scattering models of trees at low frequencies.
匹配子空间检测器在SAR图像树木目标识别中的应用
我们研究了在低频合成孔径图像中使用基于子空间的探测器来区分车辆和树木。我们将树散射建模为结构化的各向同性干扰响应,将主导车辆散射建模为二面体响应。我们形成树和目标响应的线性子空间,并应用Scharf和Friedlander(1994)开发的基于子空间的检测方法。对合成树和目标模型的分析表明了该方法的可行性。在实测图像上的初步结果提供了较低的性能,这表明需要改进数据校准和改进低频树木散射模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信