M. Samota, M. Kaur, Madhvi Sharma, Sarita, V. Krishnan, Julie Thakur, Mandeep Rawat, B. Phogat, P. Guru
{"title":"Hesperidin from citrus peel waste","authors":"M. Samota, M. Kaur, Madhvi Sharma, Sarita, V. Krishnan, Julie Thakur, Mandeep Rawat, B. Phogat, P. Guru","doi":"10.15586/qas.v15i2.1256","DOIUrl":null,"url":null,"abstract":"Hesperidin is abundantly present as a flavanone glycoside in citrus fruits. The citrus peels, seeds, pulp, and cell and membrane residues contain a high amount of hesperidin. It has received scientific momentum lately as it offers several health benefits upon consumption, as it possesses antioxidant, anti-hypocholesteric, antitumor, anticancer, antimicrobial, antibacterial, anti-inflammatory, anti-diabetic properties, and so on. It is used in the treatment of various diseases and disorders such as type-II diabetes, cancer, cardiovascular diseases, and neurological and psychiatric disorders. Various extraction methods such as solvent extraction, cold extraction, microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), and supercritical fluid extraction have been employed globally to obtain the maximum yield of hesperidin, which is also environment-friendly and cost-effective. The food industries produce a huge amount of citrus residue after the preparation of juices, jellies, jams, etc. These byproduct wastes are used to extract hesperidin. This review aims at highlighting the updated and scientific information about the nutritional, phytochemical, and biological activities of hesperidin; various classical and modern extraction methods; and their impact on the yield of hesperidin and health implications of hesperidin.","PeriodicalId":20738,"journal":{"name":"Quality Assurance and Safety of Crops & Foods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality Assurance and Safety of Crops & Foods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15586/qas.v15i2.1256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Hesperidin is abundantly present as a flavanone glycoside in citrus fruits. The citrus peels, seeds, pulp, and cell and membrane residues contain a high amount of hesperidin. It has received scientific momentum lately as it offers several health benefits upon consumption, as it possesses antioxidant, anti-hypocholesteric, antitumor, anticancer, antimicrobial, antibacterial, anti-inflammatory, anti-diabetic properties, and so on. It is used in the treatment of various diseases and disorders such as type-II diabetes, cancer, cardiovascular diseases, and neurological and psychiatric disorders. Various extraction methods such as solvent extraction, cold extraction, microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), and supercritical fluid extraction have been employed globally to obtain the maximum yield of hesperidin, which is also environment-friendly and cost-effective. The food industries produce a huge amount of citrus residue after the preparation of juices, jellies, jams, etc. These byproduct wastes are used to extract hesperidin. This review aims at highlighting the updated and scientific information about the nutritional, phytochemical, and biological activities of hesperidin; various classical and modern extraction methods; and their impact on the yield of hesperidin and health implications of hesperidin.