Предельное совместное распределение статистик критериев пакета NIST «Monobit Test», «Frequency Test within a Block» и обобщения критерия «Serial Test»

IF 0.2 Q4 MATHEMATICS, APPLIED
Максим Павлович Савелов, M. P. Savelov
{"title":"Предельное совместное распределение статистик критериев пакета NIST «Monobit Test», «Frequency Test within a Block» и обобщения критерия «Serial Test»","authors":"Максим Павлович Савелов, M. P. Savelov","doi":"10.4213/dm1744","DOIUrl":null,"url":null,"abstract":"Найдено предельное совместное распределение статистик $T_1$, $T_2$, $T_3$ следующих критериев пакета НИСТ: «Monobit Test», «Frequency Test within a Block» и обобщения критерия «Serial Test» в ситуации, когда исследуемая последовательность состоит из независимых случайных величин, имеющих распределение Бернулли с параметром $p = \\frac12$. Доказано, что $T_1$ и $(T_2, T_3)$ асимптотически некоррелированы, а $T_2$ и $T_3$ асимптотически положительно коррелированы, причем $T_1$, $T_2$, $T_3$ попарно асимптотически зависимы. Доказано, что ковариационная матрица $C$ предельного распределения вектора $(T_1, T_2, T_3)$ удовлетворяет соотношениям $C_{12}=C_{21}=C_{13}=C_{31}=0$, $C_{23}=C_{32} > 0$. В случае $p \\ne \\frac12$ описано предельное поведение вектора $(T_1, T_2, T_3)$.","PeriodicalId":42607,"journal":{"name":"Prikladnaya Diskretnaya Matematika","volume":"885 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prikladnaya Diskretnaya Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4213/dm1744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

Найдено предельное совместное распределение статистик $T_1$, $T_2$, $T_3$ следующих критериев пакета НИСТ: «Monobit Test», «Frequency Test within a Block» и обобщения критерия «Serial Test» в ситуации, когда исследуемая последовательность состоит из независимых случайных величин, имеющих распределение Бернулли с параметром $p = \frac12$. Доказано, что $T_1$ и $(T_2, T_3)$ асимптотически некоррелированы, а $T_2$ и $T_3$ асимптотически положительно коррелированы, причем $T_1$, $T_2$, $T_3$ попарно асимптотически зависимы. Доказано, что ковариационная матрица $C$ предельного распределения вектора $(T_1, T_2, T_3)$ удовлетворяет соотношениям $C_{12}=C_{21}=C_{13}=C_{31}=0$, $C_{23}=C_{32} > 0$. В случае $p \ne \frac12$ описано предельное поведение вектора $(T_1, T_2, T_3)$.
找到了T_1美元、T_2美元、T_3美元以下nist标准:“单比特测试”、“Frequency测试a Block”和“系列测试”标准的极限共享分配。事实证明,T_1美元和(T_2, T_3)是渐近相关的,T_2美元和T_3美元是渐近相关的,T_1美元,T_2美元,T_3美元是双渐近依附的。事实证明,一个covarax矩阵,C . 1, T_2, T_3,满足了美元的边际分配。在p / ne / frac12中,描述了美元向量的极限行为(T_1、T_2、T_3)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Prikladnaya Diskretnaya Matematika
Prikladnaya Diskretnaya Matematika MATHEMATICS, APPLIED-
CiteScore
0.60
自引率
50.00%
发文量
0
期刊介绍: The scientific journal Prikladnaya Diskretnaya Matematika has been issued since 2008. It was registered by Federal Control Service in the Sphere of Communications and Mass Media (Registration Witness PI № FS 77-33762 in October 16th, in 2008). Prikladnaya Diskretnaya Matematika has been selected for coverage in Clarivate Analytics products and services. It is indexed and abstracted in SCOPUS and WoS Core Collection (Emerging Sources Citation Index). The journal is a quarterly. All the papers to be published in it are obligatorily verified by one or two specialists. The publication in the journal is free of charge and may be in Russian or in English. The topics of the journal are the following: 1.theoretical foundations of applied discrete mathematics – algebraic structures, discrete functions, combinatorial analysis, number theory, mathematical logic, information theory, systems of equations over finite fields and rings; 2.mathematical methods in cryptography – synthesis of cryptosystems, methods for cryptanalysis, pseudorandom generators, appreciation of cryptosystem security, cryptographic protocols, mathematical methods in quantum cryptography; 3.mathematical methods in steganography – synthesis of steganosystems, methods for steganoanalysis, appreciation of steganosystem security; 4.mathematical foundations of computer security – mathematical models for computer system security, mathematical methods for the analysis of the computer system security, mathematical methods for the synthesis of protected computer systems;[...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信