{"title":"Deep Q-Network based Adaptive Robustness Parameters for Virtual Synchronous Generator","authors":"Wenjie Wu, Feng Guo, Qiulong Ni, Xing Liu, Lin Qiu, Youtong Fang","doi":"10.1109/ITECAsia-Pacific56316.2022.9941893","DOIUrl":null,"url":null,"abstract":"This paper investigates a reinforcement learning based adaptive robustness parameter tunning approach for the virtual synchronous generator (VSG). Particularly, a deep Q-network (DQN) algorithm is employed to realize the real-time parameter tuning of inertia and damping coefficient in the VSG controller. The proposed parameter tuning approach is confirmed by the simulation results and compared with the conventional VSG controller with fixed parameters.","PeriodicalId":45126,"journal":{"name":"Asia-Pacific Journal-Japan Focus","volume":"50 1","pages":"1-4"},"PeriodicalIF":0.2000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal-Japan Focus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITECAsia-Pacific56316.2022.9941893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AREA STUDIES","Score":null,"Total":0}
引用次数: 1
Abstract
This paper investigates a reinforcement learning based adaptive robustness parameter tunning approach for the virtual synchronous generator (VSG). Particularly, a deep Q-network (DQN) algorithm is employed to realize the real-time parameter tuning of inertia and damping coefficient in the VSG controller. The proposed parameter tuning approach is confirmed by the simulation results and compared with the conventional VSG controller with fixed parameters.